Ch 12: Fluid Mechanics
Back
Problem 11
A circular steel wire 2.00 m long must stretch no more than 0.25 cm when a tensile force of 700 N is applied to each end of the wire. What minimum diameter is required for the wire?Problem 11
Stress on a Mountaineer's Rope. A nylon rope used by mountaineers elongates 1.10 m under the weight of a 65.0-kg climber. If the rope is 45.0 m in length and 7.0 mm in diameter, what is Young's modulus for nylon?Problem 11
A solid gold bar is pulled up from the hold of the sunken RMS Titanic. (c) The bulk modulus of lead is one-fourth that of gold. Find the ratio of the volume change of a solid lead bar to that of a gold bar of equal volume for the same pressure change.Problem 11
A specimen of oil having an initial volume of 600 cm3 is subjected to a pressure increase of 3.6×10^6 Pa, and the volume is found to decrease by 0.45 cm^3. What is the bulk modulus of the material and the compressibility?Problem 11
In the Challenger Deep of the Marianas Trench, the depth of seawater is 10.9 km and the pressure is 1.16×10^8 Pa (about 1.15×10^3 atm). (a) If a cubic meter of water is taken from the surface to this depth, what is the change in its volume? (Normal atmospheric pressure is about 1.0×10^5 Pa. Assume that k for seawater is the same as the freshwater value given in Table 11.2.)Problem 11
A square steel plate is 10.0 cm on a side and 0.500 cm thick. (a) Find the shear strain that results if a force of magnitude 9.0×10^5 N is applied to each of the four sides, parallel to the side. (b) Find the displacement x (in centimeters).Problem 11
A brass wire is to withstand a tensile force of 350 N without breaking. What minimum diameter must the wire have?Problem 11
Two circular rods, one steel and the other copper, are joined end to end. Each rod is 0.750 m long and 1.50 cm in diameter. The combination is subjected to a tensile force with mag-nitude 4000 N. For each rod, what are (a) the strain and (b) the elongation?Problem 12
Hydraulic Lift II.The piston of a hydraulic automobile lift is 0.30 m in diameter. What gauge pressure, in pascals, is required to lift a car with a mass of 1200 kg? Also express this pressure in atmospheres.Problem 12
A pressure difference of 6.00 * 104 Pa is required to maintain a volume flow rate of 0.800m3/s for a viscous fluid flowing through a section of cylindrical pipe that has radius 0.210 m. What pressure difference is required to maintain the same volume flow rate if the radius of the pipe is decreased to 0.0700 m?Problem 12
A small circular hole 6.00 mm in diameter is cut in the side of a large water tank, 14.0 m below the water level in the tank. The top of the tank is open to the air. Find (a) the speed of efflux of the water and (b) the volume discharged per second.Problem 12
A cubical block of wood, 10.0 cm on a side, floats at the interface between oil and water with its lower surface 1.50 cm below the interface (Fig. E12.33). The density of the oil is 790 kg/m^3. (a) What is the gauge pressure at the upper face of the block? (b) What is the gauge pressure at the lower face of the block? (c) What are the mass and density of the block?Problem 12
A hollow plastic sphere is held below the surface of a freshwater lake by a cord anchored to the bottom of the lake. The sphere has a volume of 0.650 m^3 and the tension in the cord is 1120 N. (a) Calculate the buoyant force exerted by the water on the sphere. (b) (b) What is the mass of the sphere?Problem 12
Gold Brick.You win the lottery and decide to impress your friends by exhibiting a million-dollar cube of gold. At the time, gold is selling for $1282 per troy ounce, and 1.0000 troy ounce equals 31.1035 g. How tall would your million-dollar cube be?Problem 12
Water is flowing in a pipe with a varying cross-sectional area, and at all points the water completely fills the pipe. At point 1 the cross-sectional area of the pipe is 0.070 m^2, and the magnitude of the fluid velocity is 3.50 m/s. (c) Calculate the volume of water discharged from the open end of the pipe in 1.00 hour.Problem 12
BIO. Artery Blockage. A medical technician is trying to determine what percentage of a patient's artery is blocked by plaque. To do this, she measures the blood pressure just before the region of blockage and finds that it is 1.20×10^4 Pa, while in the region of blockage it is 1.15×10^4 Pa. Furthermore, she knows that blood flowing through the normal artery just before the point of blockage is traveling at 30.0 cm/s, and the specific gravity of this patient's blood is 1.06. What percentage of the cross-sectional area of the patient's artery is blocked by the plaque?Problem 12
At one point in a pipeline the water's speed is 3.00 m/s and the gauge pressure is 5.00×10^4 Pa. Find the gauge pressure at a second point in the line, 11.0 m lower than the first, if the pipe diameter at the second point is twice that at the first.Problem 12
A 950-kg cylindrical can buoy floats vertically in sea-water. The diameter of the buoy is 0.900 m. Calculate the additional distance the buoy will sink when an 80.0-kg man stands on top of it.Problem 12
An ore sample weighs 17.50 N in air. When the sample is suspended by a light cord and totally immersed in water, the tension in the cord is 11.20 N. Find the total volume and the density of the sample.Problem 12
A slab of ice floats on a freshwater lake. What minimum volume must the slab have for a 65.0-kg woman to be able to stand on it without getting her feet wet?Problem 12
A hollow plastic sphere is held below the surface of a freshwater lake by a cord anchored to the bottom of the lake. The sphere has a volume of 0.650 m^3 and the tension in the cord is 1120 N. (c) The cord breaks and the sphere rises to the surface. When the sphere comes to rest, what fraction of its volume will be submerged?Problem 12
A cubical block of wood, 10.0 cm on a side, floats at the interface between oil and water with its lower surface 1.50 cm below the interface (Fig. E12.33). The density of the oil is 790 kg/m^3. (a) What is the gauge pressure at the upper face of the block? (b) What is the gauge pressure at the lower face of the block? (c) What are the mass and density of the block?Problem 12
A rock has mass 1.80 kg. When the rock is suspended from the lower end of a string and totally immersed in water, the tension in the string is 12.8 N. What is the smallest density of a liquid in which the rock will float?Problem 12
On a part-time job, you are asked to bring a cylindrical iron rod of length 85.8 cm and diameter 2.85 cm from a storage room to a machinist. Will you need a cart? (To answer, calculate the weight of the rod.)Problem 12
A cube 5.0 cm on each side is made of a metal alloy. After you drill a cylindrical hole 2.0 cm in diameter all the way through and perpendicular to one face, you find that the cube weighs 6.30 N. (a) What is the density of this metal?Problem 12
A shower head has 20 circular openings, each with radius 1.0 mm. The shower head is connected to a pipe with radius 0.80 cm. If the speed of water in the pipe is 3.0 m/s, what is its speed as it exits the shower-head openings?Problem 12
A soft drink (mostly water) flows in a pipe at a beverage plant with a mass flow rate that would fill 220 0.355-L cans per minute. At point 2 in the pipe, the gauge pressure is 152 kPa and the cross-sectional area is 8.00 cm^2. At point 1, 1.35 m above point 2, the cross-sectional area is 2.00 cm^2. Find the (b) volume flow rate. (c) flow speeds at points 1 and 2.Problem 12
Home Repair. You need to extend a 2.50-inch-diameter pipe, but you have only a 1.00-inch-diameter pipe on hand. You make a fitting to connect these pipes end to end. If the water is flowing at 6.00 cm/s in the wide pipe, how fast will it be flowing through the narrow one?Problem 12
BIO In intravenous feeding, a needle is inserted in a vein in the patient's arm and a tube leads from the needle to a reservoir of fluid (density 1050 kg/m^3) located at height h above the arm. The top of the reservoir is open to the air. If the gauge pressure inside the vein is 5980 Pa, what is the minimum value of h that allows fluid to enter the vein? Assume the needle diameter is large enough that you can ignore the viscosity of the liquid.Problem 12
You are designing a diving bell to withstand the pressure of seawater at a depth of 250 m. (a) What is the gauge pressure at this depth? (You can ignore changes in the density of the water with depth.) (b) At this depth, what is the net force due to the water outside and the air inside the bell on a circular glass window 30.0 cm in diameter if the pressure inside the diving bell equals the pressure at the surface of the water? (Ignore the small variation of pressure over the surface of the window.)