A rock has mass 1.80 kg. When the rock is suspended from the lower end of a string and totally immersed in water, the tension in the string is 12.8 N. What is the smallest density of a liquid in which the rock will float?
Verified step by step guidance
1
Identify the forces acting on the rock when it is submerged in water. These include the gravitational force (weight) acting downward and the buoyant force acting upward. The tension in the string is also acting upward, balancing these forces.
Calculate the weight of the rock using the formula for gravitational force, \( F_g = m \times g \), where \( m \) is the mass of the rock and \( g \) is the acceleration due to gravity (approximately 9.8 m/s^2).
Use the information that the tension in the string is 12.8 N when the rock is fully submerged in water to find the buoyant force. The buoyant force can be calculated by subtracting the tension in the string from the weight of the rock.
Apply Archimedes' Principle, which states that the buoyant force is equal to the weight of the fluid displaced by the rock. Use the formula \( F_b = \rho_{fluid} \times V \times g \), where \( F_b \) is the buoyant force, \( \rho_{fluid} \) is the density of the fluid, \( V \) is the volume of the rock, and \( g \) is the acceleration due to gravity.
To find the smallest density of a liquid in which the rock will float, set up the equation where the buoyant force equals the weight of the rock. Solve for \( \rho_{fluid} \) to find the minimum density required for the rock to float.
Verified Solution
Video duration:
8m
Play a video:
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Buoyancy
Buoyancy is the upward force exerted by a fluid on an object submerged in it. This force is equal to the weight of the fluid displaced by the object, as described by Archimedes' principle. For an object to float, the buoyant force must equal or exceed the weight of the object.
Density is defined as mass per unit volume and is a key property of materials. It determines whether an object will float or sink in a fluid. An object will float in a fluid if its density is less than that of the fluid, while it will sink if its density is greater.
Tension is the force transmitted through a string or rope when it is pulled tight by forces acting from opposite ends. In this scenario, the tension in the string reflects the balance of forces acting on the rock, including its weight and the buoyant force from the water. Understanding this balance is crucial for determining the conditions under which the rock will float.