Ch 20: The Micro/Macro Connection
Back
Problem 20
A cylinder of nitrogen and a cylinder of neon are at the same temperature and pressure. The mean free path of a nitrogen molecule is 150 nm. What is the mean free path of a neon atom?Problem 20
2.0 mol of monatomic gas A initially has 5000 J of thermal energy. It interacts with 3.0 mol of monatomic gas B, which initially has 8000 J of thermal energy. a. Which gas has the higher initial temperature?Problem 20
The vibrational modes of molecular nitrogen are 'frozen out' at room temperature but become active at temperatures above ≈1500 K. The temperature in the combustion chamber of a jet engine can reach 2000 K, so an engineering analysis of combustion requires knowing the thermal properties of materials at these temperatures. What is the expected specific heat ratio γ for nitrogen at 2000 K?Problem 20
The thermal energy of 1.0 mol of a substance is increased by 1.0 J. What is the temperature change if the system is (a) a monatomic gas, (b) a diatomic gas, and (c) a solid?Problem 20
A 100 cm³ box contains helium at a pressure of 2.0 atm and a temperature of 100℃. It is placed in thermal contact with a 200 cm³ box containing argon at a pressure of 4.0 atm and a temperature of 400℃. b. What is the final thermal energy of each gas?Problem 20
The mean free path of a molecule in a gas is 300 nm. What will the mean free path be if the gas temperature is doubled at (a) constant volume and (b) constant pressure?Problem 20
Integrated circuits are manufactured in vacuum chambers in which the air pressure is 1.0 x 10⁻¹⁰ of Hg. What are (a) the number density and (b) the mean free path of a molecule? Assume T = 20℃.Problem 20
A mad engineer builds a cube, 2.5 m on a side, in which 6.2-cm-diameter rubber balls are constantly sent flying in random directions by vibrating walls. He will award a prize to anyone who can figure out how many balls are in the cube without entering it or taking out any of the balls. You decide to shoot 6.2-cm-diameter plastic balls into the cube, through a small hole, to see how far they get before colliding with a rubber ball. After many shots, you find they travel an average distance of 1.8 m. How many rubber balls do you think are in the cube?Problem 20
Photons of light scatter off molecules, and the distance you can see through a gas is proportional to the mean free path of photons through the gas. Photons are not gas molecules, so the mean free path of a photon is not given by Equation 20.3, but its dependence on the number density of the gas and on the molecular radius is the same. Suppose you are in a smoggy city and can barely see buildings 500 m away. a. How far would you be able to see if all the molecules around you suddenly doubled in volume?Problem 20
On earth, STP is based on the average atmospheric pressure at the surface and on a phase change of water that occurs at an easily produced temperature, being only slightly cooler than the average air temperature. The atmosphere of Venus is almost entirely carbon dioxide (CO₂), the pressure at the surface is a staggering 93 atm, and the average temperature is 470℃. Venusian scientists, if they existed, would certainly use the surface pressure as part of their definition of STP. To complete the definition, they would seek a phase change that occurs near the average temperature. Conveniently, the melting point of the element tellurium is 450℃. What are (a) the rms speed and (b) the mean free path of carbon dioxide molecules at Venusian STP based on this phase change in tellurium? The radius of a CO₂ molecule is 1.5 x 10⁻¹⁰ m.Problem 20
1.0 mol of argon has 3100 J of thermal energy. What is the gas temperature in °C?Problem 20
Liquid helium boils at 4.2 K. In a flask, the helium gas above the boiling liquid is at the same temperature. What are (a) the mean free path in the gas, (b) the rms speed of the atoms, and (c) the average energy per atom?Problem 20
The rms speed of the atoms in a 2.0 g sample of helium gas is 700 m/s. What is the thermal energy of the gas?Problem 20
A 6.0 m ✕ 8.0 m ✕ 3.0 m room contains air at 20℃. What is the room's thermal energy?Problem 20
Consider a container like that shown in Figure 20.12, with n₁ moles of a monatomic gas on one side and n₂ moles of a diatomic gas on the other. The monatomic gas has initial temperature T₁ᵢ. The diatomic gas has initial temperature T₂ᵢ. b. Show that the equilibrium temperature isProblem 20
A gas of 1.0 x 10²⁰ atoms or molecules has 1.0 J of thermal energy. Its molar specific heat at constant pressure is 20.8 J/ mol K. What is the temperature of the gas?Problem 20
2.0 g of helium at an initial temperature of 300 K interacts thermally with 8.0 g of oxygen at an initial temperature of 600 K. c. How much heat energy is transferred, and in which direction?Problem 20
A water molecule has its three atoms arranged in a 'V' shape, so it has rotational kinetic energy around any of three mutually perpendicular axes. However, like diatomic molecules, its vibrational modes are not active at temperatures below 1000 K. What is the thermal energy of 2.0 mol of steam at a temperature of 160°C?Problem 20
The rms speed of the molecules in 1.0 g of hydrogen gas is 1800 m/s. c. 500 J of work are done to compress the gas while, in the same process, 1200 J of heat energy are transferred from the gas to the environment. Afterward, what is the rms speed of the molecules?Problem 20
At 100℃ the rms speed of nitrogen molecules is 576 m/s. Nitrogen at 100℃ and a pressure of 2.0 atm is held in a container with a 10 cm x 10 cm square wall. Estimate the rate of molecular collisions (collisions/s) on this wall.Problem 20
5.0 x 10²³ nitrogen molecules collide with a 10 cm² wall each second. Assume that the molecules all travel with a speed of 400 m/s and strike the wall head-on. What is the pressure on the wall?Problem 20
a. What is the total rotational kinetic energy of 1.0 mol of nitrogen gas at 300 K?Problem 20
b. A nitrogen molecule consists of two nitrogen atoms separated by 0.11 nm, the bond length. Treat the molecule as a rotating dumbbell and find the rms angular velocity at this temperature of a nitrogen molecule around the z-axis, as shown in Figure 20.10.Problem 20
The 2010 Nobel Prize in Physics was awarded for the discovery of graphene, a two-dimensional form of carbon in which the atoms form a two-dimensional crystal-lattice sheet only one atom thick. Predict the molar specific heat of graphene. Give your answer as a multiple of R.Problem 20
Consider a container like that shown in Figure 20.12, with n₁ moles of a monatomic gas on one side and n₂ moles of a diatomic gas on the other. The monatomic gas has initial temperature T₁ᵢ. The diatomic gas has initial temperature T₂ᵢ. a. Show that the equilibrium thermal energies areProblem 20
You are watching a science fiction movie in which the hero shrinks down to the size of an atom and fights villains while jumping from air molecule to air molecule. In one scene, the hero's molecule is about to crash head-on into the molecule on which a villain is riding. The villain's molecule is initially 50 molecular radii away and, in the movie, it takes 3.5 s for the molecules to collide. Estimate the air temperature required for this to be possible. Assume the molecules are nitrogen molecules, each traveling at the rms speed. Is this a plausible temperature for air?Problem 20
Eleven molecules have speeds 15, 16, 17, …, 25 m/s. Calculate (a) vₐᵥ₉ and (b) vᵣₘₛ.Problem 20
b. A gas cylinder has a piston at one end that is moving outward at speed vₚᵢₛₜₒₙ during an isobaric expansion of the gas. Find an expression for the rate at which vᵣₘₛ is changing in terms of vₚᵢₛₜₒₙ, the instantaneous value of vᵣₘₛ, and the instantaneous value L of the length of the cylinder.Problem 20
Uranium has two naturally occurring isotopes. ²³⁸U has a natural abundance of 99.3% and ²³⁵U has an abundance of 0.7%. It is the rarer ²³⁵U that is needed for nuclear reactors. The isotopes are separated by forming uranium hexafluoride, UF₆, which is a gas, then allowing it to diffuse through a series of porous membranes. ²³⁵UF₆ has a slightly larger rms speed than ²³⁸UF₆ and diffuses slightly faster. Many repetitions of this procedure gradually separate the two isotopes. What is the ratio of the rms speed of ²³⁵UF₆ to that of ²³⁸UF₆?Problem 20
A cylinder contains gas at a pressure of 2.0 atm and a number density of 4.2 x 10²⁵ m⁻³. The rms speed of the atoms is 660 m/s. Identify the gas.