Problem 1
The genes for the traits that Mendel worked with are either all located on different chromosomes or behave as if they were. How did this help Mendel recognize the principle of independent assortment? a. Otherwise, his dihybrid crosses would not have produced a 9 : 3 : 3 : 1 ratio of F2 phenotypes. b. The occurrence of individuals with unexpected phenotypes led him to the discovery of recombination. c. It led him to the realization that the behavior of chromosomes during meiosis explained his results. d. It meant that the alleles involved were either dominant or recessive, which gave 3 : 1 ratios in the F1 generation.
Problem 2
Why is the pea wrinkle-seed allele a recessive allele? a. It 'recedes' in the F2 generation when homozygous parents are crossed. b. The trait associated with the allele is not exhibited in heterozygotes. c. Individuals with the allele have lower fitness than that of individuals with the dominant allele. d. The allele is less common than the dominant allele. (The wrinkled allele is a rare mutant.)
Problem 3
The alleles found in haploid organisms cannot be dominant or recessive. Why? a. Dominance and recessiveness describe which of two possible phenotypes are exhibited when two different alleles occur in the same individual. b. Because only one allele is present, alleles in haploid organisms are always dominant. Ac. lleles in haploid individuals are transmitted like mitochondrial DNA or chloroplast DNA. d. Most haploid individuals are bacteria, and bacterial genetics is completely different from eukaryotic genetics.
Problem 4
Two black female mice are crossed with a brown male. In several litters, female I produced 9 black offspring and 7 brown; female II produced 57 black offspring. What deductions can you make about the inheritance of black and brown coat color in mice? What are the genotypes of the parents?
Problem 5
A plant with orange, spotted flowers was grown in the greenhouse from a seed collected in the wild. The plant was self-pollinated and gave rise to the following progeny: 88 orange with spots, 34 yellow with spots, 32 orange with no spots, and 8 yellow with no spots. What can you conclude about the dominance relationships of the alleles responsible for the spotted and unspotted phenotypes? What can you conclude about the genotype of the original plant that had orange, spotted flowers?
Problem 6
In peas, purple flowers are dominant to white. If a purple-flowered, heterozygous plant were crossed with a white-flowered plant, what is the expected ratio of genotypes and phenotypes among the F1 offspring? If two of the purple-flowered F1 offspring were randomly selected and crossed, what is the expected ratio of genotypes and phenotypes among the F2 offspring?
Problem 8a
In garden peas, yellow seeds (Y) are dominant to green seeds (y), and inflated pods (I) are dominant to constricted pods (i). Suppose you have crossed YYII parents with yyii parents. Draw the F1 Punnett square and predict the expected F1 phenotype(s).
Problem 8b
In garden peas, yellow seeds (Y) are dominant to green seeds (y), and inflated pods (I) are dominant to constricted pods (i). Suppose you have crossed YYII parents with yyii parents. List the genotype(s) of gametes produced by F1 individuals.
Problem 8c
In garden peas, yellow seeds (Y) are dominant to green seeds (y), and inflated pods (I) are dominant to constricted pods (i). Suppose you have crossed YYII parents with yyii parents. Draw the F2 Punnett square. Based on this Punnett square, predict the expected phenotype(s) in the F2 generation and the expected frequency of each phenotype.
Problem 9
In parakeets, two autosomal genes that are located on different chromosomes control the production of feather pigment. Gene B codes for an enzyme that is required for the synthesis of a blue pigment, and gene Y codes for an enzyme required for the synthesis of a yellow pigment. Green results from a mixture of yellow and blue pigments, and recessive mutations that prevent production of either pigment are known for both genes. Suppose that a breeder has two green parakeets and mates them. The offspring are green, blue, yellow, and albino (unpigmented). Based on this observation, what are the genotypes of the green parents? What genotypes produce each color in the offspring? What fraction of the progeny should exhibit each type of color?
Problem 10
Imagine repeating the experiment on epigenetic inheritance that is shown in Figure 19.6. You measure the amount of radioactive uridine (U) incorporated into Hnf4a mRNA in counts per minute (cpm) to determine the level of Hnf4a gene transcription in rats born to mothers fed either a normal diet or a low-protein diet. The results are 11,478 cpm for the normal diet and 7368 cpm for the low-protein diet. For this problem, your task is to prepare a graph similar to the one at the bottom of Figure 19.6 that shows the normalized results for the low-protein diet relative to the normal diet. Normalizing values means that the value obtained from one condition is expressed as 1.0 (the norm; the normal diet in this case) and the values obtained from any other conditions (low-protein diet in this case) are expressed as decimal values relative to the norm.
Problem 10a
The smooth feathers on the back of the neck in pigeons can be reversed by a mutation to produce a 'crested' appearance in which feathers form a distinctive spike at the back of the head. A pigeon breeder examined offspring produced by a single pair of non-crested birds and recorded the following: 22 non-crested and 7 crested. She then made a series of crosses using offspring from the first cross. When she crossed two of the crested birds, all 20 of the offspring were crested. When she crossed a non-crested bird with a crested bird, 7 offspring were non-crested and 6 were crested. For these three crosses, provide genotypes for parents and offspring that are consistent with these results.
Problem 10b
The smooth feathers on the back of the neck in pigeons can be reversed by a mutation to produce a 'crested' appearance in which feathers form a distinctive spike at the back of the head. A pigeon breeder examined offspring produced by a single pair of non-crested birds and recorded the following: 22 non-crested and 7 crested. She then made a series of crosses using offspring from the first cross. When she crossed two of the crested birds, all 20 of the offspring were crested. When she crossed a non-crested bird with a crested bird, 7 offspring were non-crested and 6 were crested. Which allele is dominant?
Problem 12a
Suppose you are heterozygous for two genes that are located on different chromosomes. You carry alleles A and a for one gene and alleles B and b for the other. Draw a diagram illustrating what happens to these genes and alleles when meiosis occurs in your reproductive tissues.
Problem 12b
Suppose you are heterozygous for two genes that are located on different chromosomes. You carry alleles A and a for one gene and alleles B and b for the other. Label the stages of meiosis, the homologous chromosomes, sister chromatids, nonhomologous chromosomes, genes, and alleles.
Problem 12c
Suppose you are heterozygous for two genes that are located on different chromosomes. You carry alleles A and a for one gene and alleles B and b for the other. Be sure to list all the genetically different gametes that could form and indicate how frequently each type should be observed.
Problem 12d
Suppose you are heterozygous for two genes that are located on different chromosomes. You carry alleles A and a for one gene and alleles B and b for the other. On the diagram, identify the events responsible for the principle of segregation and the principle of independent assortment.
Problem 14
The blending inheritance hypothesis proposed that the genetic material from parents is mixed in the offspring. As a result, traits of offspring and later descendants should lie between the phenotypes of parents. Mendel, in contrast, proposed that genes are discrete and that their integrity is maintained in the offspring and in subsequent generations. Suppose the year is 1890. You are a horse breeder who has just read Mendel's paper. You don't believe his results, however, because you often work with cremello (very light-colored) and chestnut (reddish-brown) horses. You know that when you breed a cremello individual from a pure-breeding line with a chestnut individual from a pure-breeding line, the offspring are palomino—meaning they have an intermediate (golden-yellow) body color. What additional cross would you do to test whether Mendel's model is valid in the case of genes for horse color? According to his model, what offspring phenotype frequencies would you get from your experimental cross? Explain why your cross would test Mendel's model versus blending inheritance.
Problem 15
Two mothers give birth to sons at the same time in a busy hospital. The son of couple 1 is afflicted with hemophilia A, which is a recessive X-linked disease. Neither parent has the disease. Couple 2 has a normal son even though the father has hemophilia A. The two couples sue the hospital in court, claiming that a careless staff member swapped their babies at birth. You appear in court as an expert witness. What do you tell the jury? Make a diagram that you can submit to the jury.
Problem 16a
You have crossed two Drosophila melanogaster individuals that have long wings and red eyes—the wild-type phenotype. In the progeny, curved wings and lozenge eyes mutant phenotypes appear as follows According to these data, is the curved-wing allele autosomal recessive, autosomal dominant, sex-linked recessive, or sex-linked dominant?
Problem 16b
You have crossed two Drosophila melanogaster individuals that have long wings and red eyes—the wild-type phenotype. In the progeny, curved wings and lozenge eyes mutant phenotypes appear as follows. Is the lozenge-eyed allele autosomal recessive, autosomal dominant, sex-linked recessive, or sex-linked dominant?
Problem 16c
You have crossed two Drosophila melanogaster individuals that have long wings and red eyes—the wild-type phenotype. In the progeny, curved wings and lozenge eyes mutant phenotypes appear as follows: What is the genotype of the female parent?
Problem 16d
You have crossed two Drosophila melanogaster individuals that have long wings and red eyes—the wild-type phenotype. In the progeny, curved wings and lozenge eyes mutant phenotypes appear as follows: What is the genotype of the male parent?
Ch. 14 - Mendel and the Gene