Two mothers give birth to sons at the same time in a busy hospital. The son of couple 1 is afflicted with hemophilia A, which is a recessive X-linked disease. Neither parent has the disease. Couple 2 has a normal son even though the father has hemophilia A. The two couples sue the hospital in court, claiming that a careless staff member swapped their babies at birth. You appear in court as an expert witness. What do you tell the jury? Make a diagram that you can submit to the jury.
You have crossed two Drosophila melanogaster individuals that have long wings and red eyes—the wild-type phenotype. In the progeny, curved wings and lozenge eyes mutant phenotypes appear as follows: What is the genotype of the female parent?



Verified video answer for a similar problem:
You have crossed two Drosophila melanogaster individuals that have long wings and red eyes—the wild-type phenotype. In the progeny, curved wings and lozenge eyes mutant phenotypes appear as follows According to these data, is the curved-wing allele autosomal recessive, autosomal dominant, sex-linked recessive, or sex-linked dominant?
You have crossed two Drosophila melanogaster individuals that have long wings and red eyes—the wild-type phenotype. In the progeny, curved wings and lozenge eyes mutant phenotypes appear as follows. Is the lozenge-eyed allele autosomal recessive, autosomal dominant, sex-linked recessive, or sex-linked dominant?
You have crossed two Drosophila melanogaster individuals that have long wings and red eyes—the wild-type phenotype. In the progeny, curved wings and lozenge eyes mutant phenotypes appear as follows: What is the genotype of the male parent?