Chapter 14, Problem 12c
Suppose you are heterozygous for two genes that are located on different chromosomes. You carry alleles A and a for one gene and alleles B and b for the other. Be sure to list all the genetically different gametes that could form and indicate how frequently each type should be observed.
Video transcript
The smooth feathers on the back of the neck in pigeons can be reversed by a mutation to produce a 'crested' appearance in which feathers form a distinctive spike at the back of the head. A pigeon breeder examined offspring produced by a single pair of non-crested birds and recorded the following: 22 non-crested and 7 crested. She then made a series of crosses using offspring from the first cross. When she crossed two of the crested birds, all 20 of the offspring were crested. When she crossed a non-crested bird with a crested bird, 7 offspring were non-crested and 6 were crested. Which allele is dominant?
Suppose you are heterozygous for two genes that are located on different chromosomes. You carry alleles A and a for one gene and alleles B and b for the other. Draw a diagram illustrating what happens to these genes and alleles when meiosis occurs in your reproductive tissues.
Suppose you are heterozygous for two genes that are located on different chromosomes. You carry alleles A and a for one gene and alleles B and b for the other. Label the stages of meiosis, the homologous chromosomes, sister chromatids, nonhomologous chromosomes, genes, and alleles.
Suppose you are heterozygous for two genes that are located on different chromosomes. You carry alleles A and a for one gene and alleles B and b for the other. On the diagram, identify the events responsible for the principle of segregation and the principle of independent assortment.
The blending inheritance hypothesis proposed that the genetic material from parents is mixed in the offspring. As a result, traits of offspring and later descendants should lie between the phenotypes of parents. Mendel, in contrast, proposed that genes are discrete and that their integrity is maintained in the offspring and in subsequent generations. Suppose the year is 1890. You are a horse breeder who has just read Mendel's paper. You don't believe his results, however, because you often work with cremello (very light-colored) and chestnut (reddish-brown) horses. You know that when you breed a cremello individual from a pure-breeding line with a chestnut individual from a pure-breeding line, the offspring are palomino—meaning they have an intermediate (golden-yellow) body color. What additional cross would you do to test whether Mendel's model is valid in the case of genes for horse color? According to his model, what offspring phenotype frequencies would you get from your experimental cross? Explain why your cross would test Mendel's model versus blending inheritance.
Two mothers give birth to sons at the same time in a busy hospital. The son of couple 1 is afflicted with hemophilia A, which is a recessive X-linked disease. Neither parent has the disease. Couple 2 has a normal son even though the father has hemophilia A. The two couples sue the hospital in court, claiming that a careless staff member swapped their babies at birth. You appear in court as an expert witness. What do you tell the jury? Make a diagram that you can submit to the jury.