Ch 34: Geometric Optics
Chapter 34, Problem 34
The focal length of the eyepiece of a certain microscope is 18.0 mm. The focal length of the objective is 8.00 mm. The distance between objective and eyepiece is 19.7 cm. The final formed by the eyepiece is at infinity. Treat all lenses as thin. (b) What is the magnitude of the linear magnification produced by the objective?
Verified Solution
Video duration:
5mThis video solution was recommended by our tutors as helpful for the problem above.
299
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
The thin glass shell shown in Fig. E34.15 has a spherical shape with a radius of curvature of 12.0 cm, and both of its surfaces can act as mirrors. A seed 3.30 mm high is placed 15.0 cm from the center of the mirror along the optic axis, as shown in the figure. (a) Calculate the location and height of the of this seed.
456
views
Textbook Question
BIO Contact Lenses. Contact lenses are placed right on the eyeball, so the distance from the eye to an object (or ) is the same as the distance from the lens to that object (or ). A certain person can see distant objects well, but his near point is 45.0 cm from his eyes instead of the usual 25.0 cm. (a) Is this person nearsighted or farsighted?
316
views
Textbook Question
The focal length of a simple magnifier is 8.00 cm. Assume the magnifier is a thin lens placed very close to the eye. (b) If the object is 1.00 mm high, what is the height of its formed by the magnifier?
510
views
Textbook Question
Resolution of a Microscope. The formed by a microscope objective with a focal length of 5.00 mm is 160 mm from its second focal point. The eyepiece has a focal length of 26.0 mm. (a) What is the angular magnification of the microscope?
300
views
Textbook Question
A telescope is constructed from two lenses with focal lengths of 95.0 cm and 15.0 cm, the 95.0-cm lens being used as the objective. Both the object being viewed and the final are at infinity. (b) Find the height of the formed by the objective of a building 60.0 m tall, 3.00 km away.
488
views
Textbook Question
A concave mirror has a radius of curvature of 34.0 cm. (b) If the mirror is immersed in water (refractive index 1.33), what is its focal length?
424
views