Ch 34: Geometric Optics
Chapter 34, Problem 34
The thin glass shell shown in Fig. E34.15 has a spherical shape with a radius of curvature of 12.0 cm, and both of its surfaces can act as mirrors. A seed 3.30 mm high is placed 15.0 cm from the center of the mirror along the optic axis, as shown in the figure.
(a) Calculate the location and height of the of this seed.Verified Solution
Video duration:
3mThis video solution was recommended by our tutors as helpful for the problem above.
439
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
You hold a spherical salad bowl 60 cm in front of your face with the bottom of the bowl facing you. The bowl is made of polished metal with a 35-cm radius of curvature. (a) Where is the of your 5.0-cm-tall nose located?
412
views
Textbook Question
A spherical, concave shaving mirror has a radius of curvature of 32.0 cm. (b) Where is the ? Is the real or virtual?
394
views
Textbook Question
Dental Mirror. A dentist uses a curved mirror to view teeth on the upper side of the mouth. Suppose she wants an erect with a magnification of 2.00 when the mirror is 1.25 cm from a tooth. (Treat this problem as though the object and lie along a straight line.) (b) What must be the focal length and radius of curvature of this mirror?
469
views
Textbook Question
BIO Contact Lenses. Contact lenses are placed right on the eyeball, so the distance from the eye to an object (or ) is the same as the distance from the lens to that object (or ). A certain person can see distant objects well, but his near point is 45.0 cm from his eyes instead of the usual 25.0 cm. (a) Is this person nearsighted or farsighted?
310
views
Textbook Question
The focal length of a simple magnifier is 8.00 cm. Assume the magnifier is a thin lens placed very close to the eye. (b) If the object is 1.00 mm high, what is the height of its formed by the magnifier?
493
views
Textbook Question
The focal length of the eyepiece of a certain microscope is 18.0 mm. The focal length of the objective is 8.00 mm. The distance between objective and eyepiece is 19.7 cm. The final formed by the eyepiece is at infinity. Treat all lenses as thin. (b) What is the magnitude of the linear magnification produced by the objective?
291
views