Hey guys. In this video, we're going to cook up a really important reaction called reductive amination. So guys, recall back to your ketones and aldehydes section of the text that ketones and aldehydes when reacted with a primary amine in an acidic environment, what would you get? You would get the functional group called an imine. Now what was an imine? Well, remember that an imine is just a carbonyl carbon but instead of the O being attached to the C, you're going to replace that O with an N. That N could be attached to up to 1 R groups. The reason that it can't be 2 R groups is because that would be called an enamine and the double bond would be in a different spot. We're not going to be talking about enamines here. We're only talking about imines. Well, guys, this mechanism was a reversible reaction. Remember that you have your double-sided equilibrium arrows showing that you can go from the carbonyl to the imine and then back to the carbonyl. But regardless of which direction y
- 1. A Review of General Chemistry5h 5m
- Summary23m
- Intro to Organic Chemistry5m
- Atomic Structure16m
- Wave Function9m
- Molecular Orbitals17m
- Sigma and Pi Bonds9m
- Octet Rule12m
- Bonding Preferences12m
- Formal Charges6m
- Skeletal Structure14m
- Lewis Structure20m
- Condensed Structural Formula15m
- Degrees of Unsaturation15m
- Constitutional Isomers14m
- Resonance Structures46m
- Hybridization23m
- Molecular Geometry16m
- Electronegativity22m
- 2. Molecular Representations1h 14m
- 3. Acids and Bases2h 46m
- 4. Alkanes and Cycloalkanes4h 19m
- IUPAC Naming29m
- Alkyl Groups13m
- Naming Cycloalkanes10m
- Naming Bicyclic Compounds10m
- Naming Alkyl Halides7m
- Naming Alkenes3m
- Naming Alcohols8m
- Naming Amines15m
- Cis vs Trans21m
- Conformational Isomers13m
- Newman Projections14m
- Drawing Newman Projections16m
- Barrier To Rotation7m
- Ring Strain8m
- Axial vs Equatorial7m
- Cis vs Trans Conformations4m
- Equatorial Preference14m
- Chair Flip9m
- Calculating Energy Difference Between Chair Conformations17m
- A-Values17m
- Decalin7m
- 5. Chirality3h 39m
- Constitutional Isomers vs. Stereoisomers9m
- Chirality12m
- Test 1:Plane of Symmetry7m
- Test 2:Stereocenter Test17m
- R and S Configuration43m
- Enantiomers vs. Diastereomers13m
- Atropisomers9m
- Meso Compound12m
- Test 3:Disubstituted Cycloalkanes13m
- What is the Relationship Between Isomers?16m
- Fischer Projection10m
- R and S of Fischer Projections7m
- Optical Activity5m
- Enantiomeric Excess20m
- Calculations with Enantiomeric Percentages11m
- Non-Carbon Chiral Centers8m
- 6. Thermodynamics and Kinetics1h 22m
- 7. Substitution Reactions1h 48m
- 8. Elimination Reactions2h 30m
- 9. Alkenes and Alkynes2h 9m
- 10. Addition Reactions3h 18m
- Addition Reaction6m
- Markovnikov5m
- Hydrohalogenation6m
- Acid-Catalyzed Hydration17m
- Oxymercuration15m
- Hydroboration26m
- Hydrogenation6m
- Halogenation6m
- Halohydrin12m
- Carbene12m
- Epoxidation8m
- Epoxide Reactions9m
- Dihydroxylation8m
- Ozonolysis7m
- Ozonolysis Full Mechanism24m
- Oxidative Cleavage3m
- Alkyne Oxidative Cleavage6m
- Alkyne Hydrohalogenation3m
- Alkyne Halogenation2m
- Alkyne Hydration6m
- Alkyne Hydroboration2m
- 11. Radical Reactions1h 58m
- 12. Alcohols, Ethers, Epoxides and Thiols2h 42m
- Alcohol Nomenclature4m
- Naming Ethers6m
- Naming Epoxides18m
- Naming Thiols11m
- Alcohol Synthesis7m
- Leaving Group Conversions - Using HX11m
- Leaving Group Conversions - SOCl2 and PBr313m
- Leaving Group Conversions - Sulfonyl Chlorides7m
- Leaving Group Conversions Summary4m
- Williamson Ether Synthesis3m
- Making Ethers - Alkoxymercuration4m
- Making Ethers - Alcohol Condensation4m
- Making Ethers - Acid-Catalyzed Alkoxylation4m
- Making Ethers - Cumulative Practice10m
- Ether Cleavage8m
- Alcohol Protecting Groups3m
- t-Butyl Ether Protecting Groups5m
- Silyl Ether Protecting Groups10m
- Sharpless Epoxidation9m
- Thiol Reactions6m
- Sulfide Oxidation4m
- 13. Alcohols and Carbonyl Compounds2h 17m
- 14. Synthetic Techniques1h 26m
- 15. Analytical Techniques:IR, NMR, Mass Spect6h 50m
- Purpose of Analytical Techniques5m
- Infrared Spectroscopy16m
- Infrared Spectroscopy Table31m
- IR Spect:Drawing Spectra40m
- IR Spect:Extra Practice26m
- NMR Spectroscopy10m
- 1H NMR:Number of Signals26m
- 1H NMR:Q-Test26m
- 1H NMR:E/Z Diastereoisomerism8m
- H NMR Table21m
- 1H NMR:Spin-Splitting (N + 1) Rule17m
- 1H NMR:Spin-Splitting Simple Tree Diagrams11m
- 1H NMR:Spin-Splitting Complex Tree Diagrams8m
- 1H NMR:Spin-Splitting Patterns8m
- NMR Integration18m
- NMR Practice14m
- Carbon NMR4m
- Structure Determination without Mass Spect47m
- Mass Spectrometry12m
- Mass Spect:Fragmentation28m
- Mass Spect:Isotopes27m
- 16. Conjugated Systems6h 13m
- Conjugation Chemistry13m
- Stability of Conjugated Intermediates4m
- Allylic Halogenation12m
- Reactions at the Allylic Position39m
- Conjugated Hydrohalogenation (1,2 vs 1,4 addition)26m
- Diels-Alder Reaction9m
- Diels-Alder Forming Bridged Products11m
- Diels-Alder Retrosynthesis8m
- Molecular Orbital Theory9m
- Drawing Atomic Orbitals6m
- Drawing Molecular Orbitals17m
- HOMO LUMO4m
- Orbital Diagram:3-atoms- Allylic Ions13m
- Orbital Diagram:4-atoms- 1,3-butadiene11m
- Orbital Diagram:5-atoms- Allylic Ions10m
- Orbital Diagram:6-atoms- 1,3,5-hexatriene13m
- Orbital Diagram:Excited States4m
- Pericyclic Reaction10m
- Thermal Cycloaddition Reactions26m
- Photochemical Cycloaddition Reactions26m
- Thermal Electrocyclic Reactions14m
- Photochemical Electrocyclic Reactions10m
- Cumulative Electrocyclic Problems25m
- Sigmatropic Rearrangement17m
- Cope Rearrangement9m
- Claisen Rearrangement15m
- 17. Ultraviolet Spectroscopy51m
- 18. Aromaticity2h 31m
- 19. Reactions of Aromatics: EAS and Beyond5h 1m
- Electrophilic Aromatic Substitution9m
- Benzene Reactions11m
- EAS:Halogenation Mechanism6m
- EAS:Nitration Mechanism9m
- EAS:Friedel-Crafts Alkylation Mechanism6m
- EAS:Friedel-Crafts Acylation Mechanism5m
- EAS:Any Carbocation Mechanism7m
- Electron Withdrawing Groups22m
- EAS:Ortho vs. Para Positions4m
- Acylation of Aniline9m
- Limitations of Friedel-Crafts Alkyation19m
- Advantages of Friedel-Crafts Acylation6m
- Blocking Groups - Sulfonic Acid12m
- EAS:Synergistic and Competitive Groups13m
- Side-Chain Halogenation6m
- Side-Chain Oxidation4m
- Reactions at Benzylic Positions31m
- Birch Reduction10m
- EAS:Sequence Groups4m
- EAS:Retrosynthesis29m
- Diazo Replacement Reactions6m
- Diazo Sequence Groups5m
- Diazo Retrosynthesis13m
- Nucleophilic Aromatic Substitution28m
- Benzyne16m
- 20. Phenols55m
- 21. Aldehydes and Ketones: Nucleophilic Addition4h 56m
- Naming Aldehydes8m
- Naming Ketones7m
- Oxidizing and Reducing Agents9m
- Oxidation of Alcohols28m
- Ozonolysis7m
- DIBAL5m
- Alkyne Hydration9m
- Nucleophilic Addition8m
- Cyanohydrin11m
- Organometallics on Ketones19m
- Overview of Nucleophilic Addition of Solvents13m
- Hydrates6m
- Hemiacetal9m
- Acetal12m
- Acetal Protecting Group16m
- Thioacetal6m
- Imine vs Enamine15m
- Addition of Amine Derivatives5m
- Wolff Kishner Reduction7m
- Baeyer-Villiger Oxidation39m
- Acid Chloride to Ketone7m
- Nitrile to Ketone9m
- Wittig Reaction18m
- Ketone and Aldehyde Synthesis Reactions14m
- 22. Carboxylic Acid Derivatives: NAS2h 51m
- Carboxylic Acid Derivatives7m
- Naming Carboxylic Acids9m
- Diacid Nomenclature6m
- Naming Esters5m
- Naming Nitriles3m
- Acid Chloride Nomenclature5m
- Naming Anhydrides7m
- Naming Amides5m
- Nucleophilic Acyl Substitution18m
- Carboxylic Acid to Acid Chloride6m
- Fischer Esterification5m
- Acid-Catalyzed Ester Hydrolysis4m
- Saponification3m
- Transesterification5m
- Lactones, Lactams and Cyclization Reactions10m
- Carboxylation5m
- Decarboxylation Mechanism14m
- Review of Nitriles46m
- 23. The Chemistry of Thioesters, Phophate Ester and Phosphate Anhydrides1h 10m
- 24. Enolate Chemistry: Reactions at the Alpha-Carbon1h 53m
- Tautomerization9m
- Tautomers of Dicarbonyl Compounds6m
- Enolate4m
- Acid-Catalyzed Alpha-Halogentation4m
- Base-Catalyzed Alpha-Halogentation3m
- Haloform Reaction8m
- Hell-Volhard-Zelinski Reaction3m
- Overview of Alpha-Alkylations and Acylations5m
- Enolate Alkylation and Acylation12m
- Enamine Alkylation and Acylation16m
- Beta-Dicarbonyl Synthesis Pathway7m
- Acetoacetic Ester Synthesis13m
- Malonic Ester Synthesis15m
- 25. Condensation Chemistry2h 9m
- 26. Amines1h 43m
- 27. Heterocycles2h 0m
- Nomenclature of Heterocycles15m
- Acid-Base Properties of Nitrogen Heterocycles10m
- Reactions of Pyrrole, Furan, and Thiophene13m
- Directing Effects in Substituted Pyrroles, Furans, and Thiophenes16m
- Addition Reactions of Furan8m
- EAS Reactions of Pyridine17m
- SNAr Reactions of Pyridine18m
- Side-Chain Reactions of Substituted Pyridines20m
- 28. Carbohydrates5h 53m
- Monosaccharide20m
- Monosaccharides - D and L Isomerism9m
- Monosaccharides - Drawing Fischer Projections18m
- Monosaccharides - Common Structures6m
- Monosaccharides - Forming Cyclic Hemiacetals12m
- Monosaccharides - Cyclization18m
- Monosaccharides - Haworth Projections13m
- Mutarotation11m
- Epimerization9m
- Monosaccharides - Aldose-Ketose Rearrangement8m
- Monosaccharides - Alkylation10m
- Monosaccharides - Acylation7m
- Glycoside6m
- Monosaccharides - N-Glycosides18m
- Monosaccharides - Reduction (Alditols)12m
- Monosaccharides - Weak Oxidation (Aldonic Acid)7m
- Reducing Sugars23m
- Monosaccharides - Strong Oxidation (Aldaric Acid)11m
- Monosaccharides - Oxidative Cleavage27m
- Monosaccharides - Osazones10m
- Monosaccharides - Kiliani-Fischer23m
- Monosaccharides - Wohl Degradation12m
- Monosaccharides - Ruff Degradation12m
- Disaccharide30m
- Polysaccharide11m
- 29. Amino Acids3h 20m
- Proteins and Amino Acids19m
- L and D Amino Acids14m
- Polar Amino Acids14m
- Amino Acid Chart18m
- Acid-Base Properties of Amino Acids33m
- Isoelectric Point14m
- Amino Acid Synthesis: HVZ Method12m
- Synthesis of Amino Acids: Acetamidomalonic Ester Synthesis16m
- Synthesis of Amino Acids: N-Phthalimidomalonic Ester Synthesis13m
- Synthesis of Amino Acids: Strecker Synthesis13m
- Reactions of Amino Acids: Esterification7m
- Reactions of Amino Acids: Acylation3m
- Reactions of Amino Acids: Hydrogenolysis6m
- Reactions of Amino Acids: Ninhydrin Test11m
- 30. Peptides and Proteins2h 42m
- Peptides12m
- Primary Protein Structure4m
- Secondary Protein Structure17m
- Tertiary Protein Structure11m
- Disulfide Bonds17m
- Quaternary Protein Structure10m
- Summary of Protein Structure7m
- Intro to Peptide Sequencing2m
- Peptide Sequencing: Partial Hydrolysis25m
- Peptide Sequencing: Partial Hydrolysis with Cyanogen Bromide7m
- Peptide Sequencing: Edman Degradation28m
- Merrifield Solid-Phase Peptide Synthesis18m
- 32. Lipids 2h 50m
- 34. Nucleic Acids1h 32m
- 35. Transition Metals5h 33m
- Electron Configuration of Elements45m
- Coordination Complexes20m
- Ligands24m
- Electron Counting10m
- The 18 and 16 Electron Rule13m
- Cross-Coupling General Reactions40m
- Heck Reaction40m
- Stille Reaction13m
- Suzuki Reaction25m
- Sonogashira Coupling Reaction17m
- Fukuyama Coupling Reaction15m
- Kumada Coupling Reaction13m
- Negishi Coupling Reaction16m
- Buchwald-Hartwig Amination Reaction19m
- Eglinton Reaction17m
Reductive Amination - Online Tutor, Practice Problems & Exam Prep
Reductive amination is a key reaction involving the conversion of carbonyl compounds, such as aldehydes or ketones, into amines. The process begins with the formation of an iminium cation through the reaction of a carbonyl with a primary amine in an acidic environment. Instead of forming an imine, a reducing agent like sodium cyanoborohydride (NaBH3CN) is used to add hydrogen, resulting in a primary amine. This method is efficient for synthesizing amines, highlighting the importance of understanding reaction mechanisms and the role of intermediates in organic synthesis.
Reductive Amination
Video transcript
Provide the Major Product
Video transcript
Alright, guys. So you might not have noticed, but this is one of the most famous applications of reductive amination. This is the Walter White special. This is how he made his millions. Remember that he didn't want to be making meth from pseudoephedrine anymore and he was looking for a more efficient type of cook. He really needed to find methylamine. Methylamine was his limiting reagent. Well, that's because he needed to do a reductive amination of methylamine, a primary amine source, with phenylacetone, which is a precursor for methamphetamine. Then all we need is methylamine at the top in an acidic environment. And then we need a mild reducing agent such as our sodium borohydride with the cyano group. That would work perfectly. Now he might have used some kind of H2 gas with a catalyst, whatever. As long as you have some kind of mild reducing agent, you can reduce the iminium cation to the amine. So let's go ahead and draw both steps. I'm not going t
Do you want more practice?
More setsHere’s what students ask on this topic:
What is reductive amination in organic chemistry?
Reductive amination is a chemical reaction that converts carbonyl compounds, such as aldehydes or ketones, into amines. The process involves the formation of an iminium cation intermediate through the reaction of a carbonyl compound with a primary amine in an acidic environment. Instead of forming an imine, a reducing agent like sodium cyanoborohydride (NaBH3CN) is used to add hydrogen, resulting in a primary amine. This method is efficient for synthesizing amines and is widely used in organic synthesis.
What reagents are commonly used in reductive amination?
In reductive amination, the common reagents used include a carbonyl compound (such as an aldehyde or ketone), a primary amine, and a reducing agent. The most frequently used reducing agent is sodium cyanoborohydride (NaBH3CN). This reagent is preferred because it is mildly reducing, which helps to avoid unwanted side reactions and ensures the selective reduction of the iminium cation to form the desired amine.
What is the role of sodium cyanoborohydride (NaBH3CN) in reductive amination?
Sodium cyanoborohydride (NaBH3CN) plays a crucial role in reductive amination as the reducing agent. It selectively reduces the iminium cation intermediate to form the desired amine. The presence of the cyano group (CN) makes NaBH3CN a mildly reducing agent, which helps to prevent over-reduction and unwanted side reactions. This selectivity ensures that the reaction proceeds efficiently, yielding the primary amine as the final product.
What is the difference between an imine and an iminium cation?
An imine is a functional group characterized by a carbon-nitrogen double bond (C=N), formed by the reaction of a carbonyl compound with a primary amine. An iminium cation, on the other hand, is an intermediate in the formation of an imine. It has a positively charged nitrogen atom (N+) and is formed when the nitrogen of the amine reacts with the carbonyl carbon, resulting in a positively charged intermediate. The iminium cation is then reduced to form the final amine product in reductive amination.
Why is reductive amination considered a convenient method for synthesizing amines?
Reductive amination is considered a convenient method for synthesizing amines because it allows for the direct conversion of carbonyl compounds (aldehydes or ketones) into amines in a single reaction sequence. The process involves the formation of an iminium cation intermediate, which is then selectively reduced to form the desired amine. The use of a mild reducing agent like sodium cyanoborohydride (NaBH3CN) ensures high selectivity and minimizes side reactions, making the method efficient and straightforward for producing a wide range of amines.
Your Organic Chemistry tutors
- Using cyclohexanone as the starting material, describe how each of the following compounds can be synthesized:...
- The compounds commonly known as 'amino acids' are actually α-aminocarboxylic-aminocarboxylic acids (SECTION 21...
- The compounds commonly known as 'amino acids' are actually α-aminocarboxylic-aminocarboxylic acids (SECTION 21...
- Excess ammonia must be used when a primary amine is synthesized by reductive amination. What product will be...
- The two most general amine syntheses are the reductive amination of carbonyl compounds and the reduction of ...
- Propose mechanisms for the following reactions. (a) < of reaction>
- Show how to synthesize the following amines from the indicated starting materials by reductive amination. (a)...
- Using cyclohexanone as the starting material, describe how each of the following compounds can be synthesized:...
- Show how m-toluidine can be converted tothe following compounds, using any necessary reagents.<IMAGE>(f)...
- Using any necessary reagents, show how you would accomplish the following syntheses.(d) <IMAGE of reaction&...
- Show how you would use the same sulfonyl chloride as used in the sulfanilamide synthesis to make sulfathiazole...
- Predict the products of the following reactions:(h) <IMAGE of reaction>
- Show how to synthesize the following amines from the indicated starting materials by reductive amination.(e) &...
- Show how you can synthesize the following tertiary amine three different ways, each using a different secondar...
- Show how you can synthesize the following compounds starting with benzene, toluene, and alcohols containing no...
- Show how you can synthesize the following compounds starting with benzene, toluene, and alcohols containing no...
- The two most general amine syntheses are the reductive amination of carbonyl compounds and the reduction of am...
- What would happen in the synthesis of sulfanilamide if the amino group were not protected as an amide in the c...