Ch 09: Rotation of Rigid Bodies
Back
Problem 9
Calculate the moment of inertia of each of the following uniform objects about the axes indicated. Consult Table 9.2 as needed. (a) A thin 2.50-kg rod of length 75.0 cm, about an axis perpendicular to it and passing through (i) one end and (ii) its center, and (iii) about an axis parallel to the rod and passing through it.Problem 9
An electric turntable 0.750 m in diameter is rotating about a fixed axis with an initial angular velocity of 0.250 rev/s and a constant angular acceleration of 0.900 rev/s^2. (c) What is the tangential speed of a point on the rim of the turntable at t = 0.200 s?Problem 9
An electric turntable 0.750 m in diameter is rotating about a fixed axis with an initial angular velocity of 0.250 rev/s and a constant angular acceleration of 0.900 rev/s^2. (a) Compute the angular velocity of the turntable after 0.200 s. (b) Through how many revolutions has the turntable spun in this time interval?Problem 9
A wheel is rotating about an axis that is in the z-direction. The angular velocity ω_z is -6.00 rad/s at t = 0, increases linearly with time, and is +4.00 rad/s at t = 7.00 s. We have taken counterclockwise rotation to be positive. (a) Is the angular acceleration during this time interval positive or negative?Problem 9
A wheel is rotating about an axis that is in the z-direction. The angular velocity ω_z is -6.00 rad/s at t = 0, increases linearly with time, and is +4.00 rad/s at t = 7.00 s. We have taken counterclockwise rotation to be positive. (c) What is the angular displacement of the wheel at t = 7.00 s?Problem 9
An electric fan is turned off, and its angular velocity decreases uniformly from 500 rev/min to 200 rev/min in 4.00 s. (a) Find the angular acceleration in rev/s^2 and the number of revolutions made by the motor in the 4.00-s interval. (b) How many more seconds are required for the fan to come to rest if the angular acceleration remains constant at the value calculated in part (a)?Problem 9
An electric fan is turned off, and its angular velocity decreases uniformly from 500 rev/min to 200 rev/min in 4.00 s. (b) How many more seconds are required for the fan to come to rest if the angular acceleration remains constant at the value calculated in part (a)?Problem 9
A high-speed flywheel in a motor is spinning at 500 rpm when a power failure suddenly occurs. The flywheel has mass 40.0 kg and diameter 75.0 cm. The power is off for 30.0 s, and during this time the flywheel slows due to friction in its axle bearings. During the time the power is off, the flywheel makes 200 complete revolutions. (a) At what rate is the flywheel spinning when the power comes back on?Problem 9
CALC The angle θ through which a disk drive turns is given by θ(t) = a + bt - ct^3, where a, b, and c are constants, t is in seconds, and θ is in radians. When t = 0, θ = p/4 rad and the angular velocity is 2.00 rad/s. When t = 1.50 s, the angular acceleration is 1.25 rad/s^2. (a) Find a, b, and c, including their units.Problem 9
CALC The angle θ through which a disk drive turns is given by θ(t) = a + bt - ct^3, where a, b, and c are constants, t is in seconds, and θ is in radians. When t = 0, θ = p/4 rad and the angular velocity is 2.00 rad/s. When t = 1.50 s, the angular acceleration is 1.25 rad/s^2. (b) What is the angular acceleration when θ = p/4 rad?Problem 9
CALC The angle θ through which a disk drive turns is given by θ(t) = a + bt - ct^3, where a, b, and c are constants, t is in seconds, and θ is in radians. When t = 0, θ = p/4 rad and the angular velocity is 2.00 rad/s. When t = 1.50 s, the angular acceleration is 1.25 rad/s^2. (c) What are θ and the angular velocity when the angular acceleration is 3.50 rad/s^2?Problem 9
CP CALC The angular velocity of a flywheel obeys the equation ω_z(t) = A + Bt2, where t is in seconds and A and B are constants having numerical values 2.75 (for A) and 1.50 (for B). (b) What is the angular acceleration of the wheel at (i) t = 0 and (ii) t = 5.00 s?Problem 9
CALC A fan blade rotates with angular velocity given by ω_z(t) = g - bt^2, where g = 5.00 rad/s and b = 0.800 rad/s^3. (a) Calculate the angular acceleration as a function of time.Problem 9
CALC A fan blade rotates with angular velocity given by ω_z(t) = g - bt^2, where g = 5.00 rad/s and b = 0.800 rad/s^3. (b) Calculate the instantaneous angular acceleration α_z at t = 3.00 s and the average angular acceleration α_av-z for the time interval t = 0 to t = 3.00 s. How do these two quantities compare? If they are different, why?Problem 9
You are a project manager for a manufacturing company. One of the machine parts on the assembly line is a thin, uniform rod that is 60.0 cm long and has mass 0.400 kg. (a) What is the moment of inertia of this rod for an axis at its center, perpendicular to the rod?Problem 9
CALC A slender rod with length L has a mass per unit length that varies with distance from the left end, where x = 0, according to dm/dx = gx, where g has units of kg/m^2. (b) Use Eq. (9.20) to calculate the moment of inertia of the rod for an axis at the left end, perpendicular to the rod. Use the expression you derived in part (a) to express I in terms of M and L. How does your result compare to that for a uniform rod? Explain.Problem 9
The flywheel of a gasoline engine is required to give up 500 J of kinetic energy while its angular velocity decreases from 650 rev/min to 520 rev/min. What moment of inertia is required?Problem 9
A uniform sphere with mass 28.0 kg and radius 0.380 m is rotating at constant angular velocity about a stationary axis that lies along a diameter of the sphere. If the kinetic energy of the sphere is 236 J, what is the tangential velocity of a point on the rim of the sphere?Problem 9
If we multiply all the design dimensions of an object by a scaling factor f, its volume and mass will be multiplied by f^3. (b) If a 1/48 scale model has a rotational kinetic energy of 2.5 J, what will be the kinetic energy for the full-scale object of the same material rotating at the same angular velocity?Problem 9
An airplane propeller is 2.08 m in length (from tip to tip) with mass 117 kg and is rotating at 2400 rpm (rev/min) about an axis through its center. You can model the propeller as a slender rod. (a) What is its rotational kinetic energy? (b) Suppose that, due to weight constraints, you had to reduce the propeller's mass to 75.0% of its original mass, but you still needed to keep the same size and kinetic energy. What would its angular speed have to be, in rpm?Problem 9
You are a project manager for a manufacturing company. One of the machine parts on the assembly line is a thin, uniform rod that is 60.0 cm long and has mass 0.400 kg. (b) One of your engineers has proposed to reduce the moment of inertia by bending the rod at its center into a V-shape, with a 60.0o angle at its vertex. What would be the moment of inertia of this bent rod about an axis perpendicular to the plane of the V at its vertex?Problem 9
A uniform bar has two small balls glued to its ends. The bar is 2.00 m long and has mass 4.00 kg, while the balls each have mass 0.300 kg and can be treated as point masses. Find the moment of inertia of this combination about an axis (a) perpendicular to the bar through its center;Problem 9
A uniform bar has two small balls glued to its ends. The bar is 2.00 m long and has mass 4.00 kg, while the balls each have mass 0.300 kg and can be treated as point masses. Find the moment of inertia of this combination about an axis (b) perpendicular to the bar through one of the balls;Problem 9
A uniform bar has two small balls glued to its ends. The bar is 2.00 m long and has mass 4.00 kg, while the balls each have mass 0.300 kg and can be treated as point masses. Find the moment of inertia of this combination about an axis (c) parallel to the bar through both balls;Problem 9
A compound disk of outside diameter 140.0 cm is made up of a uniform solid disk of radius 50.0 cm and area density 3.00 g/cm^2 surrounded by a concentric ring of inner radius 50.0 cm, outer radius 70.0 cm, and area density 2.00 g^cm^2. Find the moment of inertia of this object about an axis perpendicular to the plane of the object and passing through its center.Problem 9
A uniform bar has two small balls glued to its ends. The bar is 2.00 m long and has mass 4.00 kg, while the balls each have mass 0.300 kg and can be treated as point masses. Find the moment of inertia of this combination about an axis (d) parallel to the bar and 0.500 m from it.Problem 9
A thin, rectangular sheet of metal has mass M and sides of length a and b. Use the parallel-axis theorem to calculate the moment of inertia of the sheet for an axis that is perpendicular to the plane of the sheet and that passes through one corner of the sheet.Problem 9
Find the moment of inertia of a hoop (a thin-walled, hollow ring) with mass M and radius R about an axis perpendicular to the hoop's plane at an edge.Problem 9
Compact Disc. A compact disc (CD) stores music in a coded pattern of tiny pits 10^-7 m deep. The pits are arranged in a track that spirals outward toward the rim of the disc; the inner and outer radii of this spiral are 25.0 mm and 58.0 mm, respectively. As the disc spins inside a CD player, the track is scanned at a constant linear speed of 1.25 m/s. (b) The maximum playing time of a CD is 74.0 min. What would be the length of the track on such a maximum-duration CD if it were stretched out in a straight line?Problem 9
Compact Disc. A compact disc (CD) stores music in a coded pattern of tiny pits 10^-7 m deep. The pits are arranged in a track that spirals outward toward the rim of the disc; the inner and outer radii of this spiral are 25.0 mm and 58.0 mm, respectively. As the disc spins inside a CD player, the track is scanned at a constant linear speed of 1.25 m/s. (c) What is the average angular acceleration of a maximumduration CD during its 74.0-min playing time? Take the direction of rotation of the disc to be positive.