Skip to main content
Ch 09: Rotation of Rigid Bodies

Chapter 9, Problem 9

You are a project manager for a manufacturing company. One of the machine parts on the assembly line is a thin, uniform rod that is 60.0 cm long and has mass 0.400 kg. (a) What is the moment of inertia of this rod for an axis at its center, perpendicular to the rod?

Verified Solution
Video duration:
1m
This video solution was recommended by our tutors as helpful for the problem above.
641
views
1
rank
Was this helpful?

Video transcript

Welcome back everybody. We have a child's toy that is a long thin uniform rod that rotates about the center. We are told that its mass is .5 kg and that its length is 100 cm or one m. We are asked to find the moment of inertia of this thin rod when rotated about that center point right here. But we have a formula here that says the moment of inertia is 1 12 times the mass times the length squared. So let's go ahead and plug in our values. We have won 12 times our mass of 120.5 times our length of one Squared, which is equal to 0. kilograms meters squared, corresponding to our final answer. Choice of D. Thank you all so much for watching. Hope this video helped. We will see you all in the next one.
Related Practice
Textbook Question
CP CALC The angular velocity of a flywheel obeys the equation ω_z(t) = A + Bt2, where t is in seconds and A and B are constants having numerical values 2.75 (for A) and 1.50 (for B). (b) What is the angular acceleration of the wheel at (i) t = 0 and (ii) t = 5.00 s?
2039
views
Textbook Question
CALC A fan blade rotates with angular velocity given by ω_z(t) = g - bt^2, where g = 5.00 rad/s and b = 0.800 rad/s^3. (a) Calculate the angular acceleration as a function of time.
668
views
Textbook Question
CALC A fan blade rotates with angular velocity given by ω_z(t) = g - bt^2, where g = 5.00 rad/s and b = 0.800 rad/s^3. (b) Calculate the instantaneous angular acceleration α_z at t = 3.00 s and the average angular acceleration α_av-z for the time interval t = 0 to t = 3.00 s. How do these two quantities compare? If they are different, why?
893
views
Textbook Question
CALC A slender rod with length L has a mass per unit length that varies with distance from the left end, where x = 0, according to dm/dx = gx, where g has units of kg/m^2. (b) Use Eq. (9.20) to calculate the moment of inertia of the rod for an axis at the left end, perpendicular to the rod. Use the expression you derived in part (a) to express I in terms of M and L. How does your result compare to that for a uniform rod? Explain.
1413
views
Textbook Question
The flywheel of a gasoline engine is required to give up 500 J of kinetic energy while its angular velocity decreases from 650 rev/min to 520 rev/min. What moment of inertia is required?
1710
views
Textbook Question
A uniform sphere with mass 28.0 kg and radius 0.380 m is rotating at constant angular velocity about a stationary axis that lies along a diameter of the sphere. If the kinetic energy of the sphere is 236 J, what is the tangential velocity of a point on the rim of the sphere?
1437
views