Ch 09: Rotation of Rigid Bodies
Chapter 9, Problem 9
CALC A fan blade rotates with angular velocity given by ω_z(t) = g - bt^2, where g = 5.00 rad/s and b = 0.800 rad/s^3. (a) Calculate the angular acceleration as a function of time.
Verified Solution
Video duration:
1mThis video solution was recommended by our tutors as helpful for the problem above.
652
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
CALC The angle θ through which a disk drive turns is given by θ(t) = a + bt - ct^3, where a, b, and c are constants, t is in seconds, and θ is in radians. When t = 0, θ = p/4 rad and the angular velocity is 2.00 rad/s. When t = 1.50 s, the angular acceleration is 1.25 rad/s^2. (b) What is the angular acceleration when θ = p/4 rad?
1613
views
Textbook Question
CALC The angle θ through which a disk drive turns is given by θ(t) = a + bt - ct^3, where a, b, and c are constants, t is in seconds, and θ is in radians. When t = 0, θ = p/4 rad and the angular velocity is 2.00 rad/s. When t = 1.50 s, the angular acceleration is 1.25 rad/s^2. (c) What are θ and the angular velocity when the angular acceleration is 3.50 rad/s^2?
876
views
Textbook Question
CP CALC The angular velocity of a flywheel obeys the equation ω_z(t) = A + Bt2, where t is in seconds and A and B are constants having numerical values 2.75 (for A) and 1.50 (for B). (b) What is the angular acceleration of the wheel at (i) t = 0 and (ii) t = 5.00 s?
2002
views
Textbook Question
CALC A fan blade rotates with angular velocity given by ω_z(t) = g - bt^2, where g = 5.00 rad/s and b = 0.800 rad/s^3. (b) Calculate the instantaneous angular acceleration α_z at t = 3.00 s and the average angular acceleration α_av-z for the time interval t = 0 to t = 3.00 s. How do these two quantities compare? If they are different, why?
876
views
Textbook Question
You are a project manager for a manufacturing company. One of the machine parts on the assembly line is a thin, uniform rod that is 60.0 cm long and has mass 0.400 kg. (a) What is the moment of inertia of this rod for an axis at its center, perpendicular to the rod?
631
views
1
rank
Textbook Question
CALC A slender rod with length L has a mass per unit length that varies with distance from the left end, where x = 0, according to dm/dx = gx, where g has units of kg/m^2. (b) Use Eq. (9.20) to calculate the moment of inertia of the rod for an axis at the left end, perpendicular to the rod. Use the expression you derived in part (a) to express I in terms of M and L. How does your result compare to that for a uniform rod? Explain.
1392
views