Ch 09: Rotation of Rigid Bodies
Chapter 9, Problem 9
A uniform bar has two small balls glued to its ends. The bar is 2.00 m long and has mass 4.00 kg, while the balls each have mass 0.300 kg and can be treated as point masses. Find the moment of inertia of this combination about an axis (d) parallel to the bar and 0.500 m from it.
Verified Solution
Video duration:
6mThis video solution was recommended by our tutors as helpful for the problem above.
682
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
A uniform bar has two small balls glued to its ends. The bar is 2.00 m long and has mass 4.00 kg, while the balls each have mass 0.300 kg and can be treated as point masses. Find the moment of inertia of this combination about an axis (b) perpendicular to the bar through one of the balls;
498
views
Textbook Question
A uniform bar has two small balls glued to its ends. The bar is 2.00 m long and has mass 4.00 kg, while the balls each have mass 0.300 kg and can be treated as point masses. Find the moment of inertia of this combination about an axis (c) parallel to the bar through both balls;
527
views
Textbook Question
A compound disk of outside diameter 140.0 cm is made up of a uniform solid disk of radius 50.0 cm and area density 3.00 g/cm^2 surrounded by a concentric ring of inner radius 50.0 cm, outer radius 70.0 cm, and area density 2.00 g^cm^2. Find the moment of inertia of this object about an axis perpendicular to the plane of the object and passing through its center.
886
views
Textbook Question
A thin, rectangular sheet of metal has mass M and sides
of length a and b. Use the parallel-axis theorem to calculate the
moment of inertia of the sheet for an axis that is perpendicular to the
plane of the sheet and that passes through one corner of the sheet.
1662
views
Textbook Question
Find the moment of inertia of a hoop (a thin-walled, hollow ring) with mass M and radius R about an axis perpendicular to the hoop's plane at an edge.
991
views
Textbook Question
Compact Disc. A compact disc (CD) stores music in a coded pattern of tiny pits 10^-7 m deep. The pits are arranged in a track that spirals outward toward the rim of the disc; the inner and outer radii of this spiral are 25.0 mm and 58.0 mm, respectively. As the disc spins inside a CD player, the track is scanned at a constant linear speed of 1.25 m/s. (b) The maximum playing time of a CD is 74.0 min. What would be the length of the track on such a maximum-duration CD if it were stretched out in a straight line?
1088
views