Chapter 18, Problem 24
A particular type of anemia in humans, called β-thalassemia, results from a severe reduction or absence of the normal β-globin chain of hemoglobin. However, the γ-globin chain, normally only expressed during fetal development, can functionally substitute for β-globin. A variety of studies have explored the use of the nucleoside 5-azacytidine for the expression of γ-globin in adult patients with β-thalassemia.
How might 5-azacytidine lead to expression of γ-globin in adult patients?
Video transcript
Amino acids are classified as positively charged, negatively charged, or electrically neutral.
How does this property of lysine allow it to interact with DNA?
Amino acids are classified as positively charged, negatively charged, or electrically neutral.
How does acetylation of lysine affect its interaction with DNA, and how is this related to the activation of gene expression?
A particular type of anemia in humans, called β-thalassemia, results from a severe reduction or absence of the normal β-globin chain of hemoglobin. However, the γ-globin chain, normally only expressed during fetal development, can functionally substitute for β-globin. A variety of studies have explored the use of the nucleoside 5-azacytidine for the expression of γ-globin in adult patients with β-thalassemia.
Explain why this drug may also have some adverse side effects.
Methylation of H3K9 by itself silences genes, but if H3K4 and H4K20 are also methylated, the combination of modifications stimulates transcription. What conclusions can you draw about this?
DNA methylation is commonly associated with a reduction of transcription. The following data come from a study of the impact of the location and extent of DNA methylation on gene activity in eukaryotic cells. A bacterial gene, luciferase, was inserted into plasmids next to eukaryotic promoter fragments. CpG sequences, either within the promoter and coding sequence (transcription unit) or outside of the transcription unit, were methylated to various degrees, in vitro. The chimeric plasmids were then introduced into cultured cells, and luciferase activity was assayed. These data compare the degree of expression of luciferase with differences in the location of DNA methylation [Irvine et al. (2002). Mol. and Cell. Biol. 22:6689–6696]. What general conclusions can be drawn from these data?