Ch. 12 - DNA Organization in Chromosomes
Chapter 12, Problem 12
Mammals contain a diploid genome consisting of at least 10⁹ bp. If this amount of DNA is present as chromatin fibers, where each group of 200 bp of DNA is combined with 9 histones into a nucleosome and each group of 6 nucleosomes is combined into a solenoid, achieving a final packing ratio of 50, determine (a) the total number of nucleosomes in all fibers, (b) the total number of histone molecules combined with DNA in the diploid genome, and (c) the combined length of all fibers.
Verified Solution
Video duration:
1mThis video solution was recommended by our tutors as helpful for the problem above.
340
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
Describe the molecular composition and arrangement of the components in the nucleosome.
399
views
Textbook Question
Describe the transitions that occur as nucleosomes are coiled and folded, ultimately forming a chromatid.
247
views
Textbook Question
Provide a comprehensive definition of heterochromatin and list as many examples as you can.
309
views
Textbook Question
Assume that a viral DNA molecule is a 50-µm-long circular strand with a uniform 20-Å diameter. If this molecule is contained in a viral head that is a 0.08-µm-diameter sphere, will the DNA molecule fit into the viral head, assuming complete flexibility of the molecule? Justify your answer mathematically.
250
views
Textbook Question
How many base pairs are in a molecule of phage T2 DNA 52-µm long?
417
views
Textbook Question
Examples of histone modifications are acetylation (by histone acetyltransferase, or HAT), which is often linked to gene activation, and deacetylation (by histone deacetylases, or HDACs), which often leads to gene silencing typical of heterochromatin. Such heterochromatinization is initiated from a nucleation site and spreads bidirectionally until encountering boundaries that delimit the silenced areas. Recall from earlier in the text (see Chapter 4) the brief discussion of position effect, where repositioning of the w⁺ allele in Drosophila by translocation or inversion near heterochromatin produces intermittent w⁺ activity. In the heterozygous state (w⁺/w) a variegated eye is produced, with white and red patches. How might one explain position-effect variegation in terms of histone acetylation and/or deacetylation?
474
views