Problem 1
Choose the best definition of a fossil. a. a rock that contains information about an organism b. a bone, tooth, shell, or other hard part of an organism that has been preserved c. any trace of an organism that lived in the past d. any part of a dead organism
Problem 2
Why does the presence of extinct forms and transitional features in the fossil record support the pattern component of the theory of evolution by natural selection? Select True or False for each statement. T/F It supports the hypothesis that individuals change over time. T/F It supports the hypothesis that weaker species are eliminated by natural selection. T/F It supports the hypothesis that species evolve to become more complex and better adapted over time. T/F It supports the hypothesis that species change over time.
Problem 2
Critique the following statement: The absence of a trait cannot be used as a synapomorphy in phylogenetic analysis; only shared derived traits that are present in the clade can be used.
Problem 3
Which of the following best characterizes an adaptive radiation? a. Descendant species occupy a large geographic area. b. A single lineage diversifies rapidly, and descendant species occupy many habitats and ecological roles. c. Natural selection is particularly intense, because disruptive selection occurs. d. Species recover after a mass extinction.
Problem 4
Which of the following is an example of homoplasy? a. hair in humans and fur in mice b. astragalus ankle bones in hippos and deer c. Hox genes in humans and flies d. streamlined bodies in dolphins and ichthyosaurs
Problem 5
What important assumption does parsimony make when assessing which phylogenetic tree is most accurate? Why was parsimony misleading in the case of the astragalus during the evolution of artiodactyls?
Problem 6
You can use a 'one-snip test' to identify monophyletic groups—meaning that if you 'cut' any branch on a tree, everything that 'falls off' is a monophyletic group. Why is this valid?
Problem 7
Describe one similarity between the End-Cretaceous Extinction and the Sixth Mass Extinction, and one difference.
Problem 8
Use the fossil evidence shown in Figure 25.6 to determine whether flight evolved earlier in insects or in birds. Is flight an example of homology or convergent evolution? Explain.
Problem 9
Coral reefs are biodiverse ecosystems that provide food, income, coastal protection, and many other services to millions of people. Yet coral reefs are under threat from human impacts such as climate change—many corals cannot tolerate the warming ocean water and have suffered massive 'bleaching' events, which can be fatal. Researchers have discovered that some corals have the capacity to acclimatize to warmer water, while other corals do not. The researchers fear that because corals are long-lived colonial animals and thus evolve slowly, they may not be able to adapt to global warming fast enough to avoid extinction. Explain how the difference between acclimatize and adapt is important to the fate of corals.
Problem 11
The vast majority of animals that ever existed are now extinct, but Tereza Jezkova and John Wiens wondered which variables were most important in driving the diversification of species that exist today. Why are there so many species in some phyla, such as Cnidaria (see photo), but so few in others, such as Ctenophora? Draw a horizontal axis to represent the number of species within phyla using a logarithmic scale (1, 10, 100, 1000 species, etc.). Then use Table 30.1 to map seven representative phyla from small to large at intervals of about an order of magnitude on this scale.
Problem 12
The vast majority of animals that ever existed are now extinct, but Tereza Jezkova and John Wiens wondered which variables were most important in driving the diversification of species that exist today. Why are there so many species in some phyla, such as Cnidaria (see photo), but so few in others, such as Ctenophora? Based on your reading of this chapter, propose at least five traits that you think might have been most important in triggering diversification within phyla (examples: origin of hearing, origin of internal fertilization).
Problem 13
The vast majority of animals that ever existed are now extinct, but Tereza Jezkova and John Wiens wondered which variables were most important in driving the diversification of species that exist today. Why are there so many species in some phyla, such as Cnidaria (see photo), but so few in others, such as Ctenophora? Jezkova and Wiens used a type of graph called a linear regression to find correlations between variables such as the proportion of species per phylum with legs (on the y-axis) and the diversification rate per phylum (on the x-axis). Sketch a graph to show what a strong positive correlation between these two variables would look like and what the absence of a correlation would look like.
Problem 14
The vast majority of animals that ever existed are now extinct, but Tereza Jezkova and John Wiens wondered which variables were most important in driving the diversification of species that exist today. Why are there so many species in some phyla, such as Cnidaria (see photo), but so few in others, such as Ctenophora? A sample of Jekova and Wiens' results is shown here. The R2 value represents the strength of the correlation (where 0.00 is lowest and 1.00 is highest). The P value represents the statistical significance. Which five traits look most important?
Problem 15
Which traits do not correlate strongly with diversification rate within phyla, but are likely to have been important in the original diversification of animal phyla during the Cambrian? Select True or False for each trait. T/F presence of a head T/F mobile lifestyle T/F terrestrial lifestyle T/F bilateral symmetry
Problem 16
The vast majority of animals that ever existed are now extinct, but Tereza Jezkova and John Wiens wondered which variables were most important in driving the diversification of species that exist today. Why are there so many species in some phyla, such as Cnidaria (see photo), but so few in others, such as Ctenophora? The researchers know that correlation does not equal causation. However, can the absence of a correlation enable you to reject a hypothesis of causation? How would the R2 values be different in a scenario where a single trait was important to diversification in many phyla versus a scenario where different traits were important to diversification in different phyla?
Ch. 25 - Phylogenies and the History of Life
Back