Ch 02: Motion Along a Straight Line
Back
Problem 2
A large boulder is ejected vertically upward from a volcano with an initial speed of 40.0 m/s. Ignore air resistance. (a) At what time after being ejected is the boulder moving at 20.0 m/s upward?Problem 2
In an experiment, a shearwater (a seabird) was taken from its nest, flown 5150 km away, and released. The bird found its way back to its nest 13.5 days after release. If we place the origin at the nest and extend the +x–axis to the release point, what was the bird's average velocity in m/s (a) for the return flightProblem 2
A car is stopped at a traffic light. It then travels along a straight road such that its distance from the light is given by x(t) = bt2 − ct3, where b = 2.40 m/s2 and c = 0.120 m/s3. (a) Calculate the average velocity of the car for the time interval t = 0 to t = 10.0 s.Problem 2
You normally drive on the freeway between San Diego and Los Angeles at an average speed of 105 km/h (65 mi/h), and the trip takes 1 h and 50 min. On a Friday afternoon, however, heavy traffic slows you down and you drive the same distance at an average speed of only 70 km/h(43 mi/h). How much longer does the trip take?Problem 2
A race car starts from rest and travels east along a straight and level track. For the first 5.0 s of the car's motion, the eastward component of the car's velocity is given by vx(t) = (0.860 m/s^3)t^2. What is the acceleration of the car when vx = 12.0 m/s?Problem 2
CALC. A car's velocity as a function of time is given by v_x(t) = α + βt^2, where α = 3.00 m/s and β = 0.100 m/s^3. (a) Calculate the average acceleration for the time interval t = 0 to t = 5.00 s.Problem 2
A turtle crawls along a straight line, which we will call the x-axis with the positive direction to the right. The equation for the turtle's position as a function of time is x(t) = 50.0 cm + (2.00 cm/s)t − (0.0625 cm/s^2)t^2. (a) Find the turtle's initial velocity, initial position, and initial acceleration.Problem 2
A rocket starts from rest and moves upward from the surface of the earth. For the first 10.0 s of its motion, the vertical acceleration of the rocket is given by ay = (2.80 m/s3)t, where the +y-direction is upward. (a) What is the height of the rocket above the surface of the earth at t = 10.0 s?Problem 2
A rocket starts from rest and moves upward from the surface of the earth. For the first 10.0 s of its motion, the vertical acceleration of the rocket is given by ay = (2.80 m/s3)t, where the +y-direction is upward. (b) What is the speed of the rocket when it is 325 m above the surface of the earth?Problem 2
A car sits on an entrance ramp to a freeway, waiting for a break in the traffic. Then the driver accelerates with constant acceleration along the ramp and onto the freeway. The car starts from rest, moves in a straight line, and has a speed of 20 m/s(45 mi/h) when it reaches the end of the 120-m-long ramp. (a) What is the acceleration of the car?Problem 2
A car sits on an entrance ramp to a freeway, waiting for a break in the traffic. Then the driver accelerates with constant acceleration along the ramp and onto the freeway. The car starts from rest, moves in a straight line, and has a speed of 20 m/s(45 mi/h) when it reaches the end of the 120-m-long ramp. (b) How much time does it take the car to travel the length of the ramp?Problem 2
The human body can survive an acceleration trauma incident (sudden stop) if the magnitude of the acceleration is less than 250 m/s2. If you are in an automobile accident with an initial speed of 105 km/h(65 mi/h) and are stopped by an airbag that inflates from the dashboard, over what distance must the airbag stop you for you to survive the crash?Problem 2
An antelope moving with constant acceleration covers the distance between two points 70.0 m apart in 6.00 s. Its speed as it passes the second point is 15.0 m/s. What is (b) its acceleration?Problem 2
A Fast Pitch. The fastest measured pitched baseball left the pitcher's hand at a speed of 45.0 m/s. If the pitcher was in contact with the ball over a distance of 1.50 m and produced constant acceleration, (a) what acceleration did he give the ball?Problem 2
In the fastest measured tennis serve, the ball left the racquet at 73.14 m/s. A served tennis ball is typically in contact with the racquet for 30.0 ms and starts from rest. Assume constant acceleration. (a) What was the ball's acceleration during this serve?Problem 2
A pilot who accelerates at more than 4g begins to 'gray out' but doesn't completely lose consciousness. (a) Assuming constant acceleration, what is the shortest time that a jet pilot starting from rest can take to reach Mach 4 (four times the speed of sound) without graying out? (Use 331 m/s for the speed of sound in cold air.)Problem 2
A pilot who accelerates at more than 4g begins to 'gray out' but doesn't completely lose consciousness. (b) How far would the plane travel during this period of acceleration? (Use 331 m/s for the speed of sound in cold air.)Problem 2
At the instant the traffic light turns green, a car that has been waiting at an intersection starts ahead with a constant acceleration of 2.80 m/s2. At the same instant a truck, traveling with a constant speed of 20.0 m/s, overtakes and passes the car. (a) How far beyond its starting point does the car overtake the truck?Problem 2
At the instant the traffic light turns green, a car that has been waiting at an intersection starts ahead with a constant acceleration of 2.80 m/s2. At the same instant a truck, traveling with a constant speed of 20.0 m/s, overtakes and passes the car. (b) How fast is the car traveling when it overtakes the truck?Problem 2
You throw a glob of putty straight up toward the ceiling, which is 3.60 m above the point where the putty leaves your hand. The initial speed of the putty as it leaves your hand is 9.50 m/s. (b) How much time from when it leaves your hand does it take the putty to reach the ceiling?Problem 2
You throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 6.00 s after it was thrown. What is the speed of the rock just before it reaches the water 28.0 m below the point where the rock left your hand? Ignore air resistance.Problem 2
(a) If a flea can jump straight up to a height of 0.440 m, what is its initial speed as it leaves the ground?Problem 2
(b) If a flea can jump straight up to a height of 0.440 m, How long is it in the air?Problem 2
A juggler throws a bowling pin straight up with an initial speed of 8.20 m/s. How much time elapses until the bowling pin returns to the juggler's hand?Problem 2
A tennis ball on Mars, where the acceleration due to gravity is 0.379g and air resistance is negligible, is hit directly upward and returns to the same level 8.5 s later. (a) How high above its original point did the ball go?Problem 2
A tennis ball on Mars, where the acceleration due to gravity is 0.379g and air resistance is negligible, is hit directly upward and returns to the same level 8.5 s later. (b) How fast was it moving just after it was hit?Problem 2
A 7500-kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.25 m/s2 and feels no appreciable air resistance. When it has reached a height of 525 m, its engines suddenly fail; the only force acting on it is now gravity. (a) What is the maximum height this rocket will reach above the launch pad?Problem 2
A 7500-kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.25 m/s2 and feels no appreciable air resistance. When it has reached a height of 525 m, its engines suddenly fail; the only force acting on it is now gravity. (b) How much time will elapse after engine failure before the rocket comes crashing down to the launch pad, and how fast will it be moving just before it crashes?Problem 2
An egg is thrown nearly vertically upward from a point near the cornice of a tall building. The egg just misses the cornice on the way down and passes a point 30.0 m below its starting point 5.00 s after it leaves the thrower's hand. Ignore air resistance. (a) What is the initial speed of the egg?Problem 2
An egg is thrown nearly vertically upward from a point near the cornice of a tall building. The egg just misses the cornice on the way down and passes a point 30.0 m below its starting point 5.00 s after it leaves the thrower's hand. Ignore air resistance. (b) How high does it rise above its starting point?