Guided course 05:42Unknown Wavelength of Laser through Double SlitPatrick Ford1843views37rank2comments
09:33Young's double slit introduction | Light waves | Physics | Khan Academykhanacademymedicine472views
Multiple ChoiceA 450 nm laser shines light through a double slit of 0.2 mm separation. If a screen is placed 4 m behind the double slit, how wide are the bright fringes of the diffraction pattern?510views9rank8comments
Multiple ChoiceA 532 nm laser illuminates a pair of slits separated by 70 μ m. What is the angular separation, in degrees, between the m=1 and m=2 bright fringes?358views1rank
Multiple ChoiceIn a two-slit experiment, laser light of wavelength 600nm passes through a pair of slits separated by 42 μm. If the observing screen is 1.4m from the slits, what is the separation, in mm, between the bright fringes?540views1rank
Multiple ChoiceA 532nm laser illuminates a pair of slits separated by 70μm. What is the angular separation, in degrees, between the m = 1 and m = 2 bright fringes?267views
Multiple ChoiceIn a two-slit experiment, laser light of wavelength 600nm passes through a pair of slits separated by 42μm. If the observing screen is 1.4m from the slits, what is the separation, in mm, between the bright fringes?258views
Textbook QuestionLight of wavelength 550 nm illuminates a double slit, and the interference pattern is observed on a screen behind the slit. The third maximum is measured to be 3.0 cm from the central maximum. The slits are then illuminated with light of wavelength 440 nm. How far is the fourth maximum from the central maximum?115views
Textbook QuestionA double-slit interference pattern is created by two narrow slits spaced 0.25 mm apart. The distance between the first and the fifth minimum on a screen 60 cm behind the slits is 5.5 mm. What is the wavelength (in nm) of the light used in this experiment?76views
Textbook QuestionA double-slit experiment is set up using a helium-neon laser (λ=633 nm). Then a very thin piece of glass (n=1.50) is placed over one of the slits. Afterward, the central point on the screen is occupied by what had been the m=10 dark fringe. How thick is the glass?161views
Textbook QuestionCoherent light with wavelength 450 nm falls on a pair of slits. On a screen 1.80 m away, the distance between dark fringes is 3.90 mm. What is the slit separation?439views
Textbook QuestionTwo slits spaced 0.450 mm apart are placed 75.0 cm from a screen. What is the distance between the second and third dark lines of the interference pattern on the screen when the slits are illuminated with coherent light with a wavelength of 500 nm?296views
Textbook QuestionCoherent light of frequency 6.32 * 1014 Hz passes through two thin slits and falls on a screen 85.0 cm away. You observe that the third bright fringe occurs at ±3.11 cm on either side of the central bright fringe. (a) How far apart are the two slits? (b) At what distance from the central bright fringe will the third dark fringe occur?371views
Textbook QuestionIn a two-slit interference pattern, the intensity at the peak of the central maximum is I0. (a) At a point in the pattern where the phase difference between the waves from the two slits is 60.0°, what is the intensity?235views
Textbook QuestionTwo slits spaced 0.260 mm apart are 0.900 m from a screen and illuminated by coherent light of wavelength 660 nm. The intensity at the center of the central maximum 1u = 0°2 is I0. What is the distance on the screen from the center of the central maximum (a) to the first minimum268views
Textbook QuestionTwo slits spaced 0.260 mm apart are 0.900 m from a screen and illuminated by coherent light of wavelength 660 nm. The intensity at the center of the central maximum 1u = 0°2 is I0. What is the distance on the screen from the center of the central maximum (b) to the point where the intensity has fallen to I0>2?287views
Textbook QuestionParallel rays of monochromatic light with wavelength 568 nm illuminate two identical slits and produce an interference pattern on a screen that is 75.0 cm from the slits. The centers of the slits are 0.640 mm apart and the width of each slit is 0.434 mm. If the intensity at the center of the central maximum is 5.00x10^-4 W/m2, what is the intensity at a point on the screen that is 0.900 mm from the center of the central maximum?446views
Textbook QuestionLaser light of wavelength 500.0 nm illuminates two identical slits, producing an interference pattern on a screen 90.0 cm from the slits. The bright bands are 1.00 cm apart, and the third bright bands on either side of the central maximum are missing in the pattern. Find the width and the separation of the two slits.435views1rank
Textbook QuestionFIGURE CP33.73 shows two nearly overlapped intensity peaks of the sort you might produce with a diffraction grating (see Figure 33.9b). As a practical matter, two peaks can just barely be resolved if their spacing Δy equals the width w of each peak, where w is measured at half of the peak’s height. Two peaks closer together than w will merge into a single peak. We can use this idea to understand the resolution of a diffraction grating. a. In the small-angle approximation, the position of the m=1 peak of a diffraction grating falls at the same location as the m=1 fringe of a double slit: y1=λL/d. Suppose two wavelengths differing by Δλ pass through a grating at the same time. Find an expression for Δy, the separation of their first-order peaks.92views
Textbook Question(I) Monochromatic light falling on two slits 0.018 mm apart produces the fifth-order bright fringe at a 12° angle. What is the wavelength of the light used?13views
Textbook Question(II) A parallel beam of light from a He–Ne laser, with a wavelength 633 nm, falls on two very narrow slits 0.068 mm apart. How far apart are the fringes in the center of the pattern on a screen 4.2 m away?12views
Textbook Question(II) Two narrow slits separated by 1.4 mm are illuminated by 544-nm light. Find the distance between adjacent bright fringes on a screen 5.0 m from the slits.11views
Textbook Question(II) Light of wavelength 474 nm in air shines on two slits 6.00 x 10⁻² mm apart. The slits are immersed in water, as is a viewing screen 60.0 cm away. How far apart are the fringes on the screen?12views
Textbook Question(II) In a two-slit interference experiment, the path length to a certain point P on the screen differs for one slit in comparison with the other by 1.25λ . (a) What is the phase difference between the two waves arriving at point P? (b) Determine the intensity at P, expressed as a fraction of the maximum intensity Iₒ on the screen.15views