Skip to main content
Ch.4 - Reactions in Aqueous Solution
Chapter 4, Problem 154a

To 100.0 mL of a solution that contains 0.120 M Cr(NO3)2 and 0.500 M HNO3 is added to 20.0 mL of 0.250 M K2Cr2O7. The dichromate and chromium(II) ions react to give chromium(III) ions. (a) Write a balanced net ionic equation for the reaction.

Verified Solution

Video duration:
7m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Net Ionic Equations

A net ionic equation represents the chemical species that are involved in a reaction, excluding spectator ions that do not participate. It focuses on the actual chemical change occurring in the solution, providing a clearer picture of the reaction. To write a net ionic equation, one must first write the complete ionic equation and then remove the ions that appear unchanged on both sides.
Recommended video:
Guided course
00:51
Net Ionic Equations

Oxidation States

Oxidation states (or oxidation numbers) indicate the degree of oxidation of an atom in a compound. They help in identifying which species are oxidized and reduced during a chemical reaction. In the context of the given reaction, understanding the oxidation states of chromium in Cr(NO3)2, K2Cr2O7, and the resulting chromium(III) ions is essential for balancing the equation correctly.
Recommended video:
Guided course
02:42
Oxidation Numbers

Stoichiometry of Reactions

Stoichiometry involves the calculation of reactants and products in chemical reactions based on the balanced equation. It allows chemists to predict the amounts of substances consumed and produced. In this question, stoichiometry is crucial for determining the molar ratios of chromium(II) ions and dichromate ions that react to form chromium(III) ions, which is necessary for writing the balanced net ionic equation.
Recommended video:
Guided course
01:16
Stoichiometry Concept
Related Practice
Textbook Question

Element M is prepared industrially by a two-step procedure according to the following (unbalanced) equations:

Assume that 0.855 g of M2O3 is submitted to the reaction sequence. When the HCl produced in step (2) is dissolved in water and titrated with 0.511 M NaOH, 144.2 mL of the NaOH solution is required to neutralize the HCl. (a) Balance both equations.

455
views
Textbook Question
Assume that you dissolve 10.0 g of a mixture of NaOH and Ba(OH)2 in 250.0 mL of water and titrate with 1.50 M hydrochloric acid. The titration is complete after 108.9 mL of the acid has been added. What is the mass in grams of each substance in the mixture?
1062
views
Textbook Question
Four solutions are prepared and mixed in the following order: (a) Start with 100.0 mL of 0.100 M BaCl2 (b) Add 50.0 mL of 0.100 M AgNO3 (c) Add 50.0 mL of 0.100 M H2SO4 (d) Add 250.0 mL of 0.100 M NH3. Write an equation for any reaction that occurs after each step, and calculate the concentrations of Ba2+, Cl-, NO3-, NH3, and NH4+ in the final solution, assuming that all reactions go to completion.
840
views
Textbook Question

(b) Calculate the concentrations of all ions in the solution after reaction. Check your concentrations to make sure that the solution is electrically neutral.

847
views
Textbook Question

Sodium nitrite, NaNO2, is frequently added to processed meats as a preservative. The amount of nitrite ion in a sample can be determined by acidifying to form nitrous acid (HNO2), letting the nitrous acid react with an excess of iodide ion, and then titrating the I3 - ion that results with thiosulfate solution in the presence of a starch indicator. The unbalanced equations are (1) (2) (a) Balance the two redox equations.

574
views
Textbook Question

Sodium nitrite, NaNO2, is frequently added to processed meats as a preservative. The amount of nitrite ion in a sample can be determined by acidifying to form nitrous acid (HNO2), letting the nitrous acid react with an excess of iodide ion, and then titrating the I3 - ion that results with thiosulfate solution in the presence of a starch indicator. The unbalanced equations are (1) (2) (b) When a nitrite-containing sample with a mass of 2.935 g was analyzed, 18.77 mL of 0.1500 M Na2S2O3 solution was needed for the reaction. What is the mass percent of NO2- ion in the sample?

592
views