Skip to main content
Ch.4 - Reactions in Aqueous Solution
Chapter 4, Problem 153

Four solutions are prepared and mixed in the following order: (a) Start with 100.0 mL of 0.100 M BaCl2 (b) Add 50.0 mL of 0.100 M AgNO3 (c) Add 50.0 mL of 0.100 M H2SO4 (d) Add 250.0 mL of 0.100 M NH3. Write an equation for any reaction that occurs after each step, and calculate the concentrations of Ba2+, Cl-, NO3-, NH3, and NH4+ in the final solution, assuming that all reactions go to completion.

Verified Solution

Video duration:
13m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Stoichiometry

Stoichiometry is the calculation of reactants and products in chemical reactions. It involves using balanced chemical equations to determine the relationships between the amounts of substances consumed and produced. In this question, stoichiometry is essential for predicting the concentrations of ions after each reaction step, as it allows for the calculation of how much of each reactant is used and how much product is formed.
Recommended video:
Guided course
01:16
Stoichiometry Concept

Solubility Rules

Solubility rules are guidelines that help predict whether a compound will dissolve in water. They indicate which ionic compounds are soluble or insoluble in aqueous solutions. In this scenario, understanding solubility is crucial for determining whether any precipitates form when mixing the solutions, particularly when combining BaCl2 with AgNO3, which can lead to the formation of insoluble AgCl.
Recommended video:
Guided course
00:28
Solubility Rules

Acid-Base Reactions

Acid-base reactions involve the transfer of protons (H+) between reactants, typically resulting in the formation of water and a salt. In this question, the addition of H2SO4 introduces an acidic component that can react with NH3, a weak base, to form NH4+. Recognizing these reactions is vital for calculating the final concentrations of NH4+ and understanding the overall chemistry of the solution.
Recommended video:
Guided course
01:09
Acid-Base Reaction
Related Practice
Textbook Question

(b) How many liters of CO2 gas were produced if the density of CO2 is 1.799 g/L?

718
views
Textbook Question

Element M is prepared industrially by a two-step procedure according to the following (unbalanced) equations:

Assume that 0.855 g of M2O3 is submitted to the reaction sequence. When the HCl produced in step (2) is dissolved in water and titrated with 0.511 M NaOH, 144.2 mL of the NaOH solution is required to neutralize the HCl. (a) Balance both equations.

455
views
Textbook Question
Assume that you dissolve 10.0 g of a mixture of NaOH and Ba(OH)2 in 250.0 mL of water and titrate with 1.50 M hydrochloric acid. The titration is complete after 108.9 mL of the acid has been added. What is the mass in grams of each substance in the mixture?
1062
views
Textbook Question

To 100.0 mL of a solution that contains 0.120 M Cr(NO3)2 and 0.500 M HNO3 is added to 20.0 mL of 0.250 M K2Cr2O7. The dichromate and chromium(II) ions react to give chromium(III) ions. (a) Write a balanced net ionic equation for the reaction.

477
views
Textbook Question

(b) Calculate the concentrations of all ions in the solution after reaction. Check your concentrations to make sure that the solution is electrically neutral.

847
views
Textbook Question

Sodium nitrite, NaNO2, is frequently added to processed meats as a preservative. The amount of nitrite ion in a sample can be determined by acidifying to form nitrous acid (HNO2), letting the nitrous acid react with an excess of iodide ion, and then titrating the I3 - ion that results with thiosulfate solution in the presence of a starch indicator. The unbalanced equations are (1) (2) (a) Balance the two redox equations.

574
views