Skip to main content
Ch.4 - Reactions in Aqueous Solution
Chapter 4, Problem 155a

Sodium nitrite, NaNO2, is frequently added to processed meats as a preservative. The amount of nitrite ion in a sample can be determined by acidifying to form nitrous acid (HNO2), letting the nitrous acid react with an excess of iodide ion, and then titrating the I3 - ion that results with thiosulfate solution in the presence of a starch indicator. The unbalanced equations are (1) (2) (a) Balance the two redox equations.

Verified Solution

Video duration:
11m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Redox Reactions

Redox reactions, or reduction-oxidation reactions, involve the transfer of electrons between two species. In these reactions, one species is oxidized (loses electrons) while another is reduced (gains electrons). Understanding the oxidation states of the elements involved is crucial for balancing redox equations, as it helps identify which species undergo oxidation and reduction.
Recommended video:
Guided course
03:12
Identifying Redox Reactions

Balancing Chemical Equations

Balancing chemical equations is the process of ensuring that the number of atoms for each element is the same on both sides of the equation. This is essential for obeying the law of conservation of mass. In redox reactions, balancing often involves adjusting coefficients to account for the electrons transferred, ensuring that the total charge and mass are conserved.
Recommended video:
Guided course
01:32
Balancing Chemical Equations

Titration and Indicators

Titration is a quantitative analytical method used to determine the concentration of a solute in a solution. In this context, thiosulfate is used to titrate the iodine species formed from the reaction of nitrous acid with iodide ions. A starch indicator is employed to signal the endpoint of the titration, changing color when all iodine has reacted, which is critical for accurate measurement of the nitrite concentration.
Recommended video:
Guided course
00:52
Best Indicator Example
Related Practice
Textbook Question
Four solutions are prepared and mixed in the following order: (a) Start with 100.0 mL of 0.100 M BaCl2 (b) Add 50.0 mL of 0.100 M AgNO3 (c) Add 50.0 mL of 0.100 M H2SO4 (d) Add 250.0 mL of 0.100 M NH3. Write an equation for any reaction that occurs after each step, and calculate the concentrations of Ba2+, Cl-, NO3-, NH3, and NH4+ in the final solution, assuming that all reactions go to completion.
840
views
Textbook Question

To 100.0 mL of a solution that contains 0.120 M Cr(NO3)2 and 0.500 M HNO3 is added to 20.0 mL of 0.250 M K2Cr2O7. The dichromate and chromium(II) ions react to give chromium(III) ions. (a) Write a balanced net ionic equation for the reaction.

477
views
Textbook Question

(b) Calculate the concentrations of all ions in the solution after reaction. Check your concentrations to make sure that the solution is electrically neutral.

847
views
Textbook Question

Sodium nitrite, NaNO2, is frequently added to processed meats as a preservative. The amount of nitrite ion in a sample can be determined by acidifying to form nitrous acid (HNO2), letting the nitrous acid react with an excess of iodide ion, and then titrating the I3 - ion that results with thiosulfate solution in the presence of a starch indicator. The unbalanced equations are (1) (2) (b) When a nitrite-containing sample with a mass of 2.935 g was analyzed, 18.77 mL of 0.1500 M Na2S2O3 solution was needed for the reaction. What is the mass percent of NO2- ion in the sample?

592
views
Textbook Question

Brass is an approximately 4:1 alloy of copper and zinc, along with small amounts of tin, lead, and iron. The mass per-cents of copper and zinc can be determined by a procedure that begins with dissolving the brass in hot nitric acid. The resulting solution of Cu2+ and Zn2+ ions is then treated with aqueous ammonia to lower its acidity, followed by addi-tion of sodium thiocyanate (NaSCN) and sulfurous acid (H2SO3) to precipitate copper(I) thiocyanate (CuSCN). The solid CuSCN is collected, dissolved in aqueous acid, and treated with potassium iodate (KIO3) to give iodine, which is then titrated with aqueous sodium thiosulfate (Na2S2O3). The filtrate remaining after CuSCN has been removed is neutralized by addition of aqueous ammonia, and a solu-tion of diammonium hydrogen phosphate ((NH4)2HPO4) is added to yield a precipitate of zinc ammonium phosphate (ZnNH4PO4). Heating the precipitate to 900 °C converts it to zinc pyrophosphate (Zn2P2O7), which is weighed. The equations are (1) (2) (3) (4) (5) (a) Balance all equations.

843
views
Textbook Question

(b) When a brass sample with a mass of 0.544 g was sub-jected to the preceding analysis, 10.82 mL of 0.1220 M sodium thiosulfate was required for the reaction with iodine. What is the mass percent copper in the brass?

385
views