Skip to main content
Ch.21 - Nuclear Chemistry
Chapter 21, Problem 43

Potassium-40 decays to argon-40 with a half-life of 1.27 * 109 yr. What is the age of a rock in which the mass ratio of 40Ar to 40K is 4.2?

Verified Solution

Video duration:
5m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Radioactive Decay

Radioactive decay is the process by which an unstable atomic nucleus loses energy by emitting radiation. This decay occurs at a predictable rate characterized by the half-life, which is the time required for half of the radioactive substance to transform into a different element or isotope.
Recommended video:
Guided course
03:00
Rate of Radioactive Decay

Half-Life

Half-life is a specific time period in which half of a given quantity of a radioactive isotope decays into its daughter product. For potassium-40, the half-life is 1.27 billion years, meaning that after this time, half of the original potassium-40 will have decayed into argon-40.
Recommended video:
Guided course
02:17
Zero-Order Half-life

Mass Ratio and Age Calculation

The mass ratio of daughter to parent isotopes can be used to determine the age of a rock through the equation derived from the decay law. By knowing the mass ratio of argon-40 to potassium-40 and the half-life, one can calculate the time elapsed since the rock formed, providing an estimate of its age.
Recommended video:
Guided course
02:14
Neutron-Proton Ratio
Related Practice
Textbook Question

It takes 4 h 39 min for a 2.00-mg sample of radium-230 to decay to 0.25 mg. What is the half-life of radium-230?

552
views
Textbook Question

Cobalt-60 is a strong gamma emitter that has a half-life of 5.26 yr. The cobalt-60 in a radiotherapy unit must be replaced when its radioactivity falls to 75% of the original sample. If an original sample was purchased in June 2016, when will it be necessary to replace the cobalt-60?

2317
views
Textbook Question

The cloth shroud from around a mummy is found to have a 14C activity of 9.7 disintegrations per minute per gram of carbon as compared with living organisms that undergo 16.3 disintegrations per minute per gram of carbon. From the half-life for 14C decay, 5715 yr, calculate the age of the shroud.

990
views
Textbook Question

The thermite reaction, Fe2O31s2 + 2 Al1s2 ¡2 Fe1s2 + Al2O31s2, H = -851.5 kJ>mol, is one of the most exothermic reactions known. Because the heat released is sufficient to melt the iron product, the reaction is used to weld metal under the ocean. How much heat is released per mole of Al2O3 produced? How does this amount of thermal energy compare with the energy released when 2 mol of protons and 2 mol of neutrons combine to form 1 mol of alpha particles?

78
views
Textbook Question

How much energy must be supplied to break a single aluminum-27 nucleus into separated protons and neutrons if an aluminum-27 atom has a mass of 26.9815386 amu? How much energy is required for 100.0 g of aluminum-27? (The mass of an electron is given on the inside back cover.)

713
views
Textbook Question

The atomic masses of hydrogen-2 (deuterium), helium-4, and lithium-6 are 2.014102 amu, 4.002602 amu, and 6.0151228 amu, respectively. For each isotope, calculate

(c) the nuclear binding energy per nucleon.

95
views