Skip to main content
Ch.17 - Additional Aspects of Aqueous Equilibria
Chapter 17, Problem 119a

Baking soda (sodium bicarbonate, NaHCO3) reacts with acids in foods to form carbonic acid 1H2CO32, which in turn decomposes to water and carbon dioxide gas. In a cake batter, the CO21g2 forms bubbles and causes the cake to rise. (a) A rule of thumb in baking is that 1/2 teaspoon of baking soda is neutralized by one cup of sour milk. The acid component in sour milk is lactic acid, CH3CH1OH2COOH. Write the chemical equation for this neutralization reaction.

Verified Solution

Video duration:
1m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Neutralization Reaction

A neutralization reaction occurs when an acid reacts with a base to produce water and a salt. In this context, baking soda (a base) reacts with lactic acid (an acid) to neutralize each other, resulting in the formation of water and sodium lactate. Understanding this concept is crucial for writing the correct chemical equation for the reaction.
Recommended video:
Guided course
05:56
Lewis Dot Structures: Neutral Compounds

Chemical Equation

A chemical equation represents a chemical reaction using symbols and formulas to show the reactants and products involved. It provides a concise way to convey the transformation of substances. In this case, writing the equation for the reaction between sodium bicarbonate and lactic acid will illustrate how the reactants convert into products, including water and sodium lactate.
Recommended video:
Guided course
01:32
Balancing Chemical Equations

Gas Evolution in Reactions

Gas evolution occurs when a reaction produces a gas as one of its products, which can lead to observable changes, such as bubbling or fizzing. In the baking context, the carbon dioxide gas produced from the decomposition of carbonic acid helps the cake rise. Recognizing the role of gas evolution is important for understanding the physical changes that accompany the chemical reactions in baking.
Recommended video:
Guided course
03:35
Gas Evolution Reactions
Related Practice
Textbook Question

The osmotic pressure of a saturated solution of strontium sulfate at 25 C is 21 torr. What is the solubility product of this salt at 25 C?

809
views
Textbook Question

A concentration of 10–100 parts per billion (by mass) of Ag+ is an effective disinfectant in swimming pools. However, if the concentration exceeds this range, the Ag+ can cause adverse health effects. One way to maintain an appropriate concentration of Ag+ is to add a slightly soluble salt to the pool. Using Ksp values from Appendix D, calculate the equilibrium concentration of Ag+ in parts per billion that would exist in equilibrium with (c) AgI.

986
views
Textbook Question

Fluoridation of drinking water is employed in many places to aid in the prevention of tooth decay. Typically. the Fion concentration is adjusted to about 1 ppm. Some water supplies are also 'hard'; that is, they contain certain cations such as Ca2 + that interfere with the action of soap. Consider a case where the concentration of Ca2 + is 8 ppm. Could a precipitate of CaF2 form under these conditions? (Make any necessary approximations.)

372
views
Textbook Question

Baking soda (sodium bicarbonate, NaHCO3) reacts with acids in foods to form carbonic acid 1H2CO32, which in turn decomposes to water and carbon dioxide gas. In a cake batter, the CO21g2 forms bubbles and causes the cake to rise. (c) If 1/2 teaspoon of baking soda is indeed completely neutralized by the lactic acid in sour milk, calculate the volume of carbon dioxide gas that would be produced at 1 atm pressure, in an oven set to 350 F.

9201
views
Textbook Question

In nonaqueous solvents, it is possible to react HF to create H2F+. Which of these statements follows from this observation? (a) HF can act like a strong acid in nonaqueous solvents, (b) HF can act like a base in nonaqueous solvents, (c) HF is thermodynamically unstable, (d) There is an acid in the nonaqueous medium that is a stronger acid than HF.

597
views