Skip to main content
Ch.17 - Additional Aspects of Aqueous Equilibria
Chapter 17, Problem 119c

Baking soda (sodium bicarbonate, NaHCO3) reacts with acids in foods to form carbonic acid 1H2CO32, which in turn decomposes to water and carbon dioxide gas. In a cake batter, the CO21g2 forms bubbles and causes the cake to rise. (c) If 1/2 teaspoon of baking soda is indeed completely neutralized by the lactic acid in sour milk, calculate the volume of carbon dioxide gas that would be produced at 1 atm pressure, in an oven set to 350 F.

Verified Solution

Video duration:
0m:0s
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Acid-Base Reactions

Acid-base reactions involve the transfer of protons (H+) between reactants. In this context, baking soda (a base) reacts with lactic acid (an acid) to produce carbonic acid, which subsequently decomposes into water and carbon dioxide. Understanding this reaction is crucial for calculating the amount of gas produced.
Recommended video:
Guided course
01:09
Acid-Base Reaction

Gas Laws

Gas laws describe the behavior of gases under various conditions of temperature and pressure. The Ideal Gas Law (PV=nRT) is particularly relevant here, as it allows us to calculate the volume of carbon dioxide produced from the reaction, given the pressure and temperature conditions in the oven.
Recommended video:
Guided course
01:43
Combined Gas Law

Stoichiometry

Stoichiometry is the calculation of reactants and products in chemical reactions based on balanced equations. It is essential for determining the amount of carbon dioxide generated from the neutralization of baking soda by lactic acid, as it provides the mole ratios needed to relate the quantities of reactants to the volume of gas produced.
Recommended video:
Guided course
01:16
Stoichiometry Concept
Related Practice
Textbook Question

A concentration of 10–100 parts per billion (by mass) of Ag+ is an effective disinfectant in swimming pools. However, if the concentration exceeds this range, the Ag+ can cause adverse health effects. One way to maintain an appropriate concentration of Ag+ is to add a slightly soluble salt to the pool. Using Ksp values from Appendix D, calculate the equilibrium concentration of Ag+ in parts per billion that would exist in equilibrium with (c) AgI.

986
views
Textbook Question

Fluoridation of drinking water is employed in many places to aid in the prevention of tooth decay. Typically. the Fion concentration is adjusted to about 1 ppm. Some water supplies are also 'hard'; that is, they contain certain cations such as Ca2 + that interfere with the action of soap. Consider a case where the concentration of Ca2 + is 8 ppm. Could a precipitate of CaF2 form under these conditions? (Make any necessary approximations.)

372
views
Textbook Question

Baking soda (sodium bicarbonate, NaHCO3) reacts with acids in foods to form carbonic acid 1H2CO32, which in turn decomposes to water and carbon dioxide gas. In a cake batter, the CO21g2 forms bubbles and causes the cake to rise. (a) A rule of thumb in baking is that 1/2 teaspoon of baking soda is neutralized by one cup of sour milk. The acid component in sour milk is lactic acid, CH3CH1OH2COOH. Write the chemical equation for this neutralization reaction.

1562
views
Textbook Question

In nonaqueous solvents, it is possible to react HF to create H2F+. Which of these statements follows from this observation? (a) HF can act like a strong acid in nonaqueous solvents, (b) HF can act like a base in nonaqueous solvents, (c) HF is thermodynamically unstable, (d) There is an acid in the nonaqueous medium that is a stronger acid than HF.

597
views