Ch 11: Equilibrium & Elasticity
Chapter 11, Problem 11
A 9.00-m-long uniform beam is hinged to a vertical wall and held horizontally by a 5.00-m-long cable attached to the wall 4.00 m above the hinge (Fig. E11.17). The metal of this cable has a test strength of 1.00 kN, which means that it will break if the tension in it exceeds that amount.
(b) What is the heaviest beam that the cable can support in this configuration?
Verified Solution
Video duration:
11mThis video solution was recommended by our tutors as helpful for the problem above.
2275
views
1
rank
1
comments
Was this helpful?
Video transcript
Related Practice
Textbook Question
A nonuniform beam 4.50 m long and weighing 1.40 kN makes an angle of 25.0° below the horizontal. It is held in position by a frictionless pivot at its upper right end and by a cable 3.00 m farther down the beam and perpendicular to it (Fig. E11.20). The center of gravity of the beam is 2.00 m down the beam from the pivot. Lighting equipment exerts a 5.00-kN downward force on the lower left end of the beam. Find the tension T in the cable and the horizontal and vertical components of the force exerted on the beam by the pivot. Start by sketching a free-body diagram of the beam.
1069
views
Textbook Question
The horizontal beam in Fig. E11.14 weighs 190 N, and its center of gravity is at its center. Find (a) the tension in the cable.
1291
views
1
rank
Textbook Question
The horizontal beam in Fig. E11.14 weighs 190 N, and its center of gravity is at its center. Find (b) the horizontal and vertical components of the force ex-erted on the beam at the wall.
682
views
Textbook Question
A 9.00-m-long uniform beam is hinged to a vertical wall and held horizontally by a 5.00-m-long cable attached to the wall 4.00 m above the hinge (Fig. E11.17). The metal of this cable has a test strength of 1.00 kN, which means that it will break if the tension in it exceeds that amount. (c) Find the horizontal and vertical compo-nents of the force the hinge exerts on the beam. Is the vertical component upward or downward?
1135
views
1
rank
1
comments
Textbook Question
Two people are carrying a uniform wooden board that is 3.00 m long and weighs 160 N. If one person applies an upward force equal to 60 N at one end, at what point does the other person lift? Begin with a free-body diagram of the board.
2165
views
1
rank
Textbook Question
A diving board 3.00 m long is supported at a point 1.00 m from the end, and a diver weighing 500 N stands at the free end (Fig. E11.11). The diving board is of uniform cross section and weighs 280 N. Find (a) the force at the support point.
922
views
1
rank