Ch 11: Equilibrium & Elasticity
Chapter 11, Problem 11
A diving board 3.00 m long is supported at a point 1.00 m from the end, and a diver weighing 500 N stands at the free end (Fig. E11.11). The diving board is of uniform cross section and weighs 280 N.
Find (a) the force at the support point.Verified Solution
Video duration:
4mThis video solution was recommended by our tutors as helpful for the problem above.
922
views
1
rank
Was this helpful?
Video transcript
Related Practice
Textbook Question
A 9.00-m-long uniform beam is hinged to a vertical wall and held horizontally by a 5.00-m-long cable attached to the wall 4.00 m above the hinge (Fig. E11.17). The metal of this cable has a test strength of 1.00 kN, which means that it will break if the tension in it exceeds that amount.
(b) What is the heaviest beam that the cable can support in this configuration?
2275
views
1
rank
1
comments
Textbook Question
A 9.00-m-long uniform beam is hinged to a vertical wall and held horizontally by a 5.00-m-long cable attached to the wall 4.00 m above the hinge (Fig. E11.17). The metal of this cable has a test strength of 1.00 kN, which means that it will break if the tension in it exceeds that amount. (c) Find the horizontal and vertical compo-nents of the force the hinge exerts on the beam. Is the vertical component upward or downward?
1135
views
1
rank
1
comments
Textbook Question
Two people are carrying a uniform wooden board that is 3.00 m long and weighs 160 N. If one person applies an upward force equal to 60 N at one end, at what point does the other person lift? Begin with a free-body diagram of the board.
2165
views
1
rank
Textbook Question
A 15,000-N crane pivots around a friction-free axle at its base and is supported by a cable making a 25° angle with the crane (Fig. E11.18). The crane is 16 m long and is not uniform, its center of gravity being 7.0 m from the axle as measured along the crane. The cable is attached 3.0 m from the upper end of the crane. When the crane is raised to 55° above the horizontal hold-ing an 11,000-N pallet of bricks by a 2.2-m, very light cord, find (a) the tension in the cable. Start with a free-body diagram of the crane.
1909
views
1
rank
Textbook Question
Suppose that you can lift no more than 650 N (around 150 lb) unaided. (a) How much can you lift using a 1.4-m-long wheelbarrow that weighs 80.0 N and whose center of gravity is 0.50 m from the center of the wheel (Fig. E11.16)? The cen-ter of gravity of the load car-ried in the wheelbarrow is also 0.50 m from the center of the wheel. (b) Where does the force come from to enable you to lift more than 650 N using the wheelbarrow?
519
views