Ch 11: Equilibrium & Elasticity
Chapter 11, Problem 11
A nonuniform beam 4.50 m long and weighing 1.40 kN makes an angle of 25.0° below the horizontal. It is held in position by a frictionless pivot at its upper right end and by a cable 3.00 m farther down the beam and perpendicular to it (Fig. E11.20). The center of gravity of the beam is 2.00 m down the beam from the pivot. Lighting equipment exerts a 5.00-kN downward force on the lower left end of the beam. Find the tension T in the cable and the horizontal and vertical components of the force exerted on the beam by the pivot. Start by sketching a free-body diagram of the beam.
Verified Solution
Video duration:
15mThis video solution was recommended by our tutors as helpful for the problem above.
1053
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
A uniform 300-N trapdoor in a floor is hinged at one side. Find the net upward force needed to begin to open it and the total force exerted on the door by the hinges (a) if the upward force is applied at the center and (b) if the upward force is applied at the center of the edge opposite the hinges.
1329
views
1
rank
Textbook Question
A uniform 300-N trapdoor in a floor is hinged at one side. Find the net upward force needed to begin to open it and the total force exerted on the door by the hinges (a) if the upward force is applied at the center and (b) if the upward force is applied at the center of the edge opposite the hinges.
544
views
Textbook Question
Suppose that you can lift no more than 650 N (around 150 lb) unaided. (a) How much can you lift using a 1.4-m-long wheelbarrow that weighs 80.0 N and whose center of gravity is 0.50 m from the center of the wheel (Fig. E11.16)? The cen-ter of gravity of the load car-ried in the wheelbarrow is also 0.50 m from the center of the wheel. (b) Where does the force come from to enable you to lift more than 650 N using the wheelbarrow?
433
views
Textbook Question
The horizontal beam in Fig. E11.14 weighs 190 N, and its center of gravity is at its center. Find (a) the tension in the cable.
1272
views
1
rank
Textbook Question
The horizontal beam in Fig. E11.14 weighs 190 N, and its center of gravity is at its center. Find (b) the horizontal and vertical components of the force ex-erted on the beam at the wall.
660
views
Textbook Question
A 9.00-m-long uniform beam is hinged to a vertical wall and held horizontally by a 5.00-m-long cable attached to the wall 4.00 m above the hinge (Fig. E11.17). The metal of this cable has a test strength of 1.00 kN, which means that it will break if the tension in it exceeds that amount.
(b) What is the heaviest beam that the cable can support in this configuration?
2252
views
1
rank
1
comments