Skip to main content
Ch 02: Motion Along a Straight Line
Chapter 2, Problem 2

High-speed motion pictures (3500 frames/second) of a jumping, 210–μg flea yielded the data used to plot the graph in Fig. E2.54. (See 'The Flying Leap of the Flea' by M. Rothschild, Y. Schlein, K. Parker, C. Neville, and S. Sternberg in the November 1973 Scientific American.) This flea was about 2 mm long and jumped at a nearly vertical takeoff angle. Use the graph to answer these questions: (c) Find the flea's acceleration at 0.5 ms, 1.0 ms, and 1.5 ms. Velocity-time graph showing a flea's jump, with time in ms and velocity in m/s.
Speed-time graph of a flea's jump, with time in ms and speed in cm/s.

Verified step by step guidance
1
Step 1: Identify the given data from the graph. The graph shows the speed of the flea in cm/s as a function of time in ms.
Step 2: Convert the speed from cm/s to m/s if necessary. Note that 1 m/s = 100 cm/s.
Step 3: Determine the slope of the speed-time graph at the given times (0.5 ms, 1.0 ms, and 1.5 ms). The slope of the speed-time graph represents the acceleration.
Step 4: Use the formula for acceleration, a = Δv/Δt, where Δv is the change in velocity and Δt is the change in time. Calculate the slope (acceleration) at each specified time by finding the tangent to the curve at those points.
Step 5: Interpret the results. The acceleration values at 0.5 ms, 1.0 ms, and 1.5 ms will give you an understanding of how the flea's acceleration changes over time during its jump.

Verified Solution

Video duration:
5m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?
Related Practice
Textbook Question
The Fastest (and Most Expensive) Car! The table shows test data for the Bugatti Veyron Super Sport, the fastest street car made. The car is moving in a straight line (the x-axis). (a) Sketch a vx–t graph of this car's velocity (in mi/h) as a function of time. Is its acceleration constant? (b) Calculate the car's average acceleration (in m/s2) between (i) 0 and 2.1 s; (ii) 2.1 s and 20.0 s; (iii) 20.0 s and 53 s. Are these results consistent with your graph in part (a)? (Before you decide to buy this car, it might be helpful to know that only 300 will be built, it runs out of gas in 12 minutes at top speed, and it costs more than $1.5 million!)

791
views
Textbook Question
High-speed motion pictures (3500 frames/second) of a jumping, 210–μg flea yielded the data used to plot the graph in Fig. E2.54. (See 'The Flying Leap of the Flea' by M. Rothschild, Y. Schlein, K. Parker, C. Neville, and S. Sternberg in the November 1973 Scientific American.) This flea was about 2 mm long and jumped at a nearly vertical takeoff angle. Use the graph to answer these questions: (a) Is the acceleration of the flea ever zero? If so, when? Justify your answer.

708
views
Textbook Question
High-speed motion pictures (3500 frames/second) of a jumping, 210–μg flea yielded the data used to plot the graph in Fig. E2.54. (See 'The Flying Leap of the Flea' by M. Rothschild, Y. Schlein, K. Parker, C. Neville, and S. Sternberg in the November 1973 Scientific American.) This flea was about 2 mm long and jumped at a nearly vertical takeoff angle. Use the graph to answer these questions: (b) Find the maximum height the flea reached in the first 2.5 ms.

774
views
Textbook Question
A brick is dropped (zero initial speed) from the roof of a building. The brick strikes the ground in 1.90 s. You may ignore air resistance, so the brick is in free fall. (a) How tall, in meters, is the building?
620
views
Textbook Question
A brick is dropped (zero initial speed) from the roof of a building. The brick strikes the ground in 1.90 s. You may ignore air resistance, so the brick is in free fall. (b) What is the magnitude of the brick's velocity just before it reaches the ground?
1309
views
Textbook Question
A 15-kg rock is dropped from rest on the earth and reaches the ground in 1.75 s. When it is dropped from the same height on Saturn's satellite Enceladus, the rock reaches the ground in 18.6 s. What is the acceleration due to gravity on Enceladus?
1322
views