Ch 02: Motion Along a Straight Line
Chapter 2, Problem 2
High-speed motion pictures (3500 frames/second) of a jumping, 210–μg flea yielded the data used to plot the graph in Fig. E2.54. (See 'The Flying Leap of the Flea' by M. Rothschild, Y. Schlein, K. Parker, C. Neville, and S. Sternberg in the November 1973 Scientific American.) This flea was about 2 mm long and jumped at a nearly vertical takeoff angle. Use the graph to answer these questions: (a) Is the acceleration of the flea ever zero? If so, when? Justify your answer.
Verified Solution
Video duration:
2mThis video solution was recommended by our tutors as helpful for the problem above.
658
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
A cat walks in a straight line, which we shall call the x-axis, with the positive direction to the right. As an observant physicist, you make measurements of this cat's motion and construct a graph of the feline's velocity as a function of time (Fig. E2.30). (c) What distance does the cat move during the first 4.5 s? From t = 0 to t = 7.5 s?
816
views
Textbook Question
A cat walks in a straight line, which we shall call the x-axis, with the positive direction to the right. As an observant physicist, you make measurements of this cat's motion and construct a graph of the feline's velocity as a function of time (Fig. E2.30). (d) Assuming that the cat started at the origin, sketch clear graphs of the cat's acceleration and position as functions of time.
1356
views
Textbook Question
The Fastest (and Most Expensive) Car! The table shows test data for the Bugatti Veyron Super Sport, the fastest street car made.