Skip to main content
Ch 02: Motion Along a Straight Line
Chapter 2, Problem 2

A cat walks in a straight line, which we shall call the x-axis, with the positive direction to the right. As an observant physicist, you make measurements of this cat's motion and construct a graph of the feline's velocity as a function of time (Fig. E2.30). (c) What distance does the cat move during the first 4.5 s? From t = 0 to t = 7.5 s? Velocity-time graph showing a cat's increasing velocity over 7.5 seconds.
Velocity-time graph depicting a cat's decreasing velocity over 7 seconds.

Verified step by step guidance
1
Identify the area under the velocity-time graph to find the distance traveled. The area under the curve represents the displacement.
For the first graph, from t = 0 to t = 4.5 s, the velocity changes linearly from -3 m/s to 0 m/s. Calculate the area of the triangle formed under the curve.
For the first graph, from t = 0 to t = 7.5 s, the velocity changes linearly from -3 m/s to 3 m/s. Calculate the area of the trapezoid formed under the curve.
For the second graph, from t = 0 to t = 4.5 s, the velocity changes linearly from 8 cm/s to 0 cm/s. Calculate the area of the triangle formed under the curve.
For the second graph, from t = 0 to t = 7 s, the velocity changes linearly from 8 cm/s to 0 cm/s. Calculate the area of the triangle formed under the curve.

Verified Solution

Video duration:
3m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?
Related Practice
Textbook Question
A ball moves in a straight line (the x-axis). The graph in Fig. E2.9 shows this ball's velocity as a function of time. (a) What are the ball's average speed and average velocity during the first 3.0 s?

3246
views
2
rank
Textbook Question
A cat walks in a straight line, which we shall call the x-axis, with the positive direction to the right. As an observant physicist, you make measurements of this cat's motion and construct a graph of the feline's velocity as a function of time (Fig. E2.30). (a) Find the cat's velocity at t = 4.0 s and at t = 7.0 s.

1834
views
Textbook Question
A cat walks in a straight line, which we shall call the x-axis, with the positive direction to the right. As an observant physicist, you make measurements of this cat's motion and construct a graph of the feline's velocity as a function of time (Fig. E2.30). (b) What is the cat's acceleration at t = 3.0 s? At t = 6.0 s? At t = 7.0 s?

1076
views
Textbook Question
A cat walks in a straight line, which we shall call the x-axis, with the positive direction to the right. As an observant physicist, you make measurements of this cat's motion and construct a graph of the feline's velocity as a function of time (Fig. E2.30). (d) Assuming that the cat started at the origin, sketch clear graphs of the cat's acceleration and position as functions of time.

1509
views
Textbook Question
The Fastest (and Most Expensive) Car! The table shows test data for the Bugatti Veyron Super Sport, the fastest street car made. The car is moving in a straight line (the x-axis). (a) Sketch a vx–t graph of this car's velocity (in mi/h) as a function of time. Is its acceleration constant? (b) Calculate the car's average acceleration (in m/s2) between (i) 0 and 2.1 s; (ii) 2.1 s and 20.0 s; (iii) 20.0 s and 53 s. Are these results consistent with your graph in part (a)? (Before you decide to buy this car, it might be helpful to know that only 300 will be built, it runs out of gas in 12 minutes at top speed, and it costs more than $1.5 million!)

796
views
Textbook Question
High-speed motion pictures (3500 frames/second) of a jumping, 210–μg flea yielded the data used to plot the graph in Fig. E2.54. (See 'The Flying Leap of the Flea' by M. Rothschild, Y. Schlein, K. Parker, C. Neville, and S. Sternberg in the November 1973 Scientific American.) This flea was about 2 mm long and jumped at a nearly vertical takeoff angle. Use the graph to answer these questions: (a) Is the acceleration of the flea ever zero? If so, when? Justify your answer.

718
views