Ch 08: Dynamics II: Motion in a Plane
Chapter 8, Problem 8
2.0 kg ball swings in a vertical circle on the end of an 80-cm-long string. The tension in the string is 20 N when its angle from the highest point on the circle is θ = 30°. a. What is the ball's speed when θ = 30°?
Verified Solution
Video duration:
0m:0sThis video solution was recommended by our tutors as helpful for the problem above.
723
views
1
rank
Was this helpful?
Video transcript
Related Practice
Textbook Question
a. An object of mass m swings in a horizontal circle on a string of length L that tilts downward at angle θ. Find an expression for the angular velocity ω.
546
views
Textbook Question
Two wires are tied to the 2.0 kg sphere shown in
FIGURE P8.45. The sphere revolves in a horizontal circle at constant speed. a. For what speed is the tension the same in both wires?
548
views
Textbook Question
A 2.0 kg pendulum bob swings on a 2.0-m-long string. The bob's speed is 1.5 m/s when the string makes a 15° angle with vertical and the bob is moving toward the bottom of the arc. At this instant, what are the magnitudes of (c) the tension in the string?
663
views
Textbook Question
Three satellites orbit a planet of radius R, as shown in FIGURE EX13.24. Satellites S₁ and S₃ have mass m. Satellite S₂ has mass 2m. Satellite S₁ orbits in 250 minutes and the force on S₁ is 10,000 N.
(b) What are the forces of S₂ and S₃?
734
views
Textbook Question
Three satellites orbit a planet of radius R, as shown in FIGURE EX13.24. Satellites S₁ and S₃ have mass m. Satellite S₂ has mass 2m. Satellite S₁ orbits in 250 minutes and the force on S₁ is 10,000 N.
(c) What is the kinetic-energy ratio for K₁ / K₃ for S₁ and S₃?
339
views
Textbook Question
Large stars can explode as they finish burning their nuclear fuel, causing a supernova. The explosion blows away the outer layers of the star. According to Newton's third law, the forces that push the outer layers away have reaction forces that are inwardly directed on the core of the star. These forces compress the core and can cause the core to undergo a gravitational collapse. The gravitational forces keep pulling all the matter together tighter and tighter, crushing atoms out of existence. Under these extreme conditions, a proton and an electron can be squeezed together to form a neutron. If the collapse is halted when the neutrons all come into contact with each other, the result is an object called a neutron star, an entire star consisting of solid nuclear matter. Many neutron stars rotate about their axis with a period of ≈ 1 s and, as they do so, send out a pulse of electromagnetic waves once a second. These stars were discovered in the 1960s and are called pulsars. (e) What is the radius of a geosynchronous orbit?
441
views