Skip to main content
Ch 08: Dynamics II: Motion in a Plane
Chapter 8, Problem 13

Three satellites orbit a planet of radius R, as shown in FIGURE EX13.24. Satellites S₁ and S₃ have mass m. Satellite S₂ has mass 2m. Satellite S₁ orbits in 250 minutes and the force on S₁ is 10,000 N. (c) What is the kinetic-energy ratio for K₁ / K₃ for S₁ and S₃?

Verified Solution

Video duration:
7m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Gravitational Force

The gravitational force is the attractive force between two masses, described by Newton's law of universal gravitation. It is proportional to the product of the masses and inversely proportional to the square of the distance between their centers. In the context of satellites, this force is crucial for maintaining their orbits around a planet.
Recommended video:
Guided course
05:41
Gravitational Forces in 2D

Kinetic Energy in Orbital Motion

Kinetic energy (K) in orbital motion is given by the formula K = (1/2)mv², where m is the mass of the satellite and v is its orbital velocity. For satellites in circular orbits, the velocity can be derived from the gravitational force acting on them, which influences their kinetic energy. Understanding this relationship is essential for comparing the kinetic energies of different satellites.
Recommended video:
Guided course
9:11
Energy of Circular Orbits

Orbital Period and Velocity Relationship

The orbital period (T) of a satellite is the time it takes to complete one full orbit around a planet. For circular orbits, there is a direct relationship between the orbital period and the orbital radius, described by Kepler's third law. This relationship helps determine the velocity of the satellites, which is necessary for calculating their kinetic energies and comparing them.
Recommended video:
Guided course
04:45
Geosynchronous Orbits
Related Practice
Textbook Question
A 2.0 kg pendulum bob swings on a 2.0-m-long string. The bob's speed is 1.5 m/s when the string makes a 15° angle with vertical and the bob is moving toward the bottom of the arc. At this instant, what are the magnitudes of (c) the tension in the string?
708
views
Textbook Question
2.0 kg ball swings in a vertical circle on the end of an 80-cm-long string. The tension in the string is 20 N when its angle from the highest point on the circle is θ = 30°. a. What is the ball's speed when θ = 30°?
798
views
1
rank
Textbook Question
Three satellites orbit a planet of radius R, as shown in FIGURE EX13.24. Satellites S₁ and S₃ have mass m. Satellite S₂ has mass 2m. Satellite S₁ orbits in 250 minutes and the force on S₁ is 10,000 N. (b) What are the forces of S₂ and S₃?

785
views
Textbook Question
Large stars can explode as they finish burning their nuclear fuel, causing a supernova. The explosion blows away the outer layers of the star. According to Newton's third law, the forces that push the outer layers away have reaction forces that are inwardly directed on the core of the star. These forces compress the core and can cause the core to undergo a gravitational collapse. The gravitational forces keep pulling all the matter together tighter and tighter, crushing atoms out of existence. Under these extreme conditions, a proton and an electron can be squeezed together to form a neutron. If the collapse is halted when the neutrons all come into contact with each other, the result is an object called a neutron star, an entire star consisting of solid nuclear matter. Many neutron stars rotate about their axis with a period of ≈ 1 s and, as they do so, send out a pulse of electromagnetic waves once a second. These stars were discovered in the 1960s and are called pulsars. (e) What is the radius of a geosynchronous orbit?
471
views
Textbook Question

FIGURE P13.57 shows two planets of mass m orbiting a star of mass M. The planets are in the same orbit, with radius r, but are always at opposite ends of a diameter. Find an exact expression for the orbital period T. <IMAGE> Hint: Each planet feels two forces.

134
views
Textbook Question

The solar system is 25,000 light years from the center of our Milky Way galaxy. One light year is the distance light travels in one year at a speed of 3.0 x 10⁸ m/s . Astronomers have determined that the solar system is orbiting the center of the galaxy at a speed of 230 km/s . (c) The gravitational force on the solar system is the net force due to all the matter inside our orbit. Most of that matter is concentrated near the center of the galaxy. Assume that the matter has a spherical distribution, like a giant star. What is the approximate mass of the galactic center?

165
views