18. Waves & Sound
Wave Functions
18. Waves & Sound
Wave Functions
Showing 4 of 5 videos
Additional 4 creators.
Learn with other creators
Showing 4 of 7 videos
Practice this topic
- Multiple Choice
Write the mathematical representation of the wave graphed in the following two figures.
811views1rank2comments - Multiple Choice
A transverse wave is represented by the following function: . What is the phase angle of this wave?
641views - Multiple Choice
The function for some transverse wave is ? = (0.5 m) sin [(0.8 m−1)x − 2?(50 Hz)t + π/3]. What is the transverse velocity at t=2 s, x=7 cm? What is the maximum transverse speed? The maximum transverse acceleration?
753views2rank6comments - Multiple ChoiceThe vertical displacement of a wave moving along the x-axis is given by . What is the wave speed and in what direction is it traveling?544views
- Textbook QuestionA fellow student with a mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x, t)=2.30mm cos[(16.98 rad/m^)x+(742 rad/s)t]. Being more practical, you measure the rope to have a length of 1.35 m and a mass of 0.00338 kg. You are then asked to determine the following: (d) wave speed; (e) direction the wave is traveling;411views
- Textbook QuestionA fellow student with a mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x, t)=2.30mm cos[(16.98 rad/m^)x+(742 rad/s)t]. Being more practical, you measure the rope to have a length of 1.35 m and a mass of 0.00338 kg. You are then asked to determine the following: (a) amplitude; (b) frequency; (c) wavelength; (d) wave speed; (e) direction the wave is traveling; (f) tension in the rope; (g) average power transmitted by the wave.773views
- Textbook QuestionA sound wave is described by D (y,t) = (0.0200 mm) ✕ sin [(8.96 rad/m)y + (3140 rad/s)t + π/4 rad], where y is in m and t is in s. b. Along which axis is the air oscillating?452views
- Textbook QuestionShow that the displacement D(x,t) = cx² + dt², where c and d are constants, is a solution to the wave equation. Then find an expression in terms of c and d for the wave speed.415views