Skip to main content
Ch. 23 - Developmental Genetics

Chapter 22, Problem 20

In Arabidopsis, flower development is controlled by sets of homeotic genes. How many classes of these genes are there, and what structures are formed by their individual and combined expression?

Verified Solution
Video duration:
1m
This video solution was recommended by our tutors as helpful for the problem above.
276
views
Was this helpful?

Video transcript

Hello, everyone and welcome to today's video. So jeans A B and C make up the majority of the home idiotic gene classes that control for all development in a certain species, which are the following genes in Arab Idol autopsies determines the distinction between settles and pedals. Well, in order to do this, we really need to understand what each gene is going to be coding for. Well, for example, jean B is going to be coding for the identity of pedals and standards. This is not going to be the correct answer choice. So we're going to cancel it out. Then we have gene C which is going to be determining the identity of standards and carpools. Finally, we have Gina and Gina is precisely going to be determining or identifying the identity of samples and pedals. So here the correct answer choice is going to be genie. I really hope this video helped you and I hope to see you on the next one.
Related Practice
Textbook Question

A number of genes that control expression of Hox genes in Drosophila have been identified. One of these homozygous mutants is extra sex combs, where some of the head and all of the thorax and abdominal segments develop as the last abdominal segment. In other words, all affected segments develop as posterior segments. What does this phenotype tell you about which set of Hox genes is controlled by the extra sex combs gene?

348
views
Textbook Question

The apterous gene in Drosophila encodes a protein required for wing patterning and growth. It is also known to function in nerve development, fertility, and viability. When human and mouse genes whose protein products closely resemble apterous were used to generate transgenic Drosophila [Rincon-Limas et al. (1999). Proc. Nat. Acad. Sci. (USA) 96:2165–2170], the apterous mutant phenotype was rescued. In addition, the whole-body expression patterns in the transgenic Drosophila were similar to normal apterous.

What is meant by the term rescued in this context?

218
views
Textbook Question

The apterous gene in Drosophila encodes a protein required for wing patterning and growth. It is also known to function in nerve development, fertility, and viability. When human and mouse genes whose protein products closely resemble apterous were used to generate transgenic Drosophila [Rincon-Limas et al. (1999). Proc. Nat. Acad. Sci. (USA) 96:2165–2170], the apterous mutant phenotype was rescued. In addition, the whole-body expression patterns in the transgenic Drosophila were similar to normal apterous.

What do these results indicate about the molecular nature of development?

287
views
Textbook Question

The floral homeotic genes of Arabidopsis belong to the MADS-box gene family, while in Drosophila, homeotic genes belong to the homeobox gene family. In both Arabidopsis and Drosophila, members of the Polycomb gene family control expression of these divergent homeotic genes. How do Polycomb genes control expression of two very different sets of homeotic genes?

322
views
Textbook Question

Vulval development in C. elegans is dependent on the response of some of the central epidermal progenitor cells in the region of the developing vulva to a chemical signal from the gonad. Signaling from the gonad is blocked by action of the vulvaless mutant let-23 so that none of the central progenitor cells form vulval structures. In the vulvaless mutant, n300, the central progenitor cells do not form.

Which gene is likely to act earlier in the vulval developmental pathway?

200
views
Textbook Question

Vulval development in C. elegans is dependent on the response of some of the central epidermal progenitor cells in the region of the developing vulva to a chemical signal from the gonad. Signaling from the gonad is blocked by action of the vulvaless mutant let-23 so that none of the central progenitor cells form vulval structures. In the vulvaless mutant, n300, the central progenitor cells do not form.

What phenotype (vulva formed or vulvaless) would you expect from the double mutant? Why?

344
views