Skip to main content
Ch. 21 - Genomic Analysis

Chapter 20, Problem 23

Yeager, M., et al. [(2007) Nature Genetics 39:645–649] and Sladek, R., et al. [(2007) Nature 445:881–885] have used single-nucleotide polymorphisms (SNPs) in genome-wide association studies (GWAS) to identify novel risk loci for prostate cancer and Type 2 diabetes, respectively. Each study suggests that disease-risk genes can be identified that significantly contribute to the disease state. Given your understanding of such complex diseases, what would you determine as reasonable factors to consider when interpreting the results of GWAS?

Verified Solution
Video duration:
1m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Video transcript

Hey, everyone. Let's take a look at this question together, which genetic marker is commonly used in genome wide association studies. So let's recall what we know about genome wide association studies to figure out which of the following genetic markers it commonly used. So we know that genome wide association studies uses a genetic marker to determine rates like major human diseases. And that genetic marker that it commonly uses are single nucleotide polymorphisms or SNPs. Answer choice B, which is the correct answer because we know that single nucleotide polymorphisms or SNPs refer to the genomic variant at a single base position within the D N A. And so genome wide association studies commonly uses these single nucleotide polymorphisms to determine traits like major human diseases. No answer. Choice B is the correct answer. I hope you found this video to be helpful. Thank you and goodbye.
Related Practice
Textbook Question
Homology can be defined as the presence of common structures because of shared ancestry. Homology can involve genes, proteins, or anatomical structures. As a result of 'descent with modification,' many homologous structures have adapted different purposes. List three anatomical structures in vertebrates that are homologous but have different functions.
375
views
Textbook Question
Homology can be defined as the presence of common structures because of shared ancestry. Homology can involve genes, proteins, or anatomical structures. As a result of 'descent with modification,' many homologous structures have adapted different purposes. Is it likely that homologous proteins from different species have the same or similar functions? Explain.
304
views
Textbook Question
Homology can be defined as the presence of common structures because of shared ancestry. Homology can involve genes, proteins, or anatomical structures. As a result of 'descent with modification,' many homologous structures have adapted different purposes. Under what circumstances might one expect proteins of similar function to not share homology? Would you expect such proteins to be homologous at the level of DNA sequences?
219
views
Textbook Question
Comparisons between human and chimpanzee genomes indicate that a gene that may function as a wild-type or normal gene in one primate may function as a disease-causing gene in another [The Chimpanzee Sequencing and Analysis Consortium (2005). Nature 437:69–87]. For instance, the PPARG locus (regulator of adipocyte differentiation) is a wild-type allele in chimps but is clearly associated with Type 2 diabetes in humans. What factors might cause this apparent contradiction? Would you consider such apparent contradictions to be rare or common? What impact might such findings have on the use of comparative genomics to identify and design therapies for disease-causing genes in humans?
463
views
Textbook Question

Dominguez et al. (2004) suggest that by studying genes that determine growth and tissue specification in the eye of Drosophila, much can be learned about human eye development.

What evidence suggests that genetic eye determinants in Drosophila are also found in humans? Include a discussion of orthologous genes in your answer.

219
views
Textbook Question

Dominguez et al. (2004) suggest that by studying genes that determine growth and tissue specification in the eye of Drosophila, much can be learned about human eye development.

What evidence indicates that the eyeless gene is part of a developmental network?

212
views