Skip to main content
Ch. 12 - DNA Organization in Chromosomes

Chapter 12, Problem 20

In a study of Drosophila, two normally active genes, w⁺ (wild-type allele of the white-eye gene) and hsp26 (a heat-shock gene), were introduced (using a plasmid vector) into euchromatic and heterochromatic chromosomal regions, and the relative activity of each gene was assessed [Sun et al. (2002)]. An approximation of the resulting data is shown in the following table. Which characteristic or characteristics of heterochromatin are supported by the experimental data? Gene Activity (relative percentage) _ Euchromatin Heterochromatin hsp26 100% 31% w⁺ 100% 8%

Verified Solution
Video duration:
2m
This video solution was recommended by our tutors as helpful for the problem above.
264
views
Was this helpful?

Video transcript

Hey everyone. Let's take a look at this question together. Which of the falling options can be used to define a phenotype that is stable E inherited and is caused by changes in chroma tin but not D. N. A. Sequence. So let's take a look at the following options to figure out which one best defines a phenotype that is stable we inherited and is caused by changes in chrome a tin but not in D. N. A. Sequence. While starting off with answer choice A. We can see mutation which we know that a mutation is caused by changes in D. N. A. Sequence. So a change in the D. N. A. Sequence would make answer choice a incorrect so it is not a mutation. Answer choice B says an autism trait which we do know autism traits are passed down from parent to child through that autism a dominant inheritance. However a condition past down can be a mutation which we do know that mutations are caused by changes in that D. N. A. Sequence and so answer choice B. Is also incorrect answer choice E says sex linked trait which we know that a sex linked trait refers to sex specific inheritance such as excellent recessive, excellent, dominant and wide linked in humans. But those genetic changes in those sex linked traits are also examples of changes in D. N. A sequences. And so it cannot be a sex linked trait which means by process of elimination. The correct answer has to be answer choice D. Epigenetic trait which we also know is the correct answer. Because those epigenetic changes can be reversed because they do not alter the N. A. Sequences, which the question is asking us about, A phenotype that is stable inherited caused by changes in chrome button but not D. N. A sequence, which is an epigenetic trait. Since those epigenetic traits alter how your body interprets the D. N. A. Sequence instead of changing that D. N. A. Sequence and that is why answer choice D. Is the correct answer. I hope you found this video to be helpful. Thank you and goodbye.
Related Practice
Textbook Question
Assume that a viral DNA molecule is a 50-µm-long circular strand with a uniform 20-Å diameter. If this molecule is contained in a viral head that is a 0.08-µm-diameter sphere, will the DNA molecule fit into the viral head, assuming complete flexibility of the molecule? Justify your answer mathematically.
250
views
Textbook Question
How many base pairs are in a molecule of phage T2 DNA 52-µm long?
417
views
Textbook Question
Examples of histone modifications are acetylation (by histone acetyltransferase, or HAT), which is often linked to gene activation, and deacetylation (by histone deacetylases, or HDACs), which often leads to gene silencing typical of heterochromatin. Such heterochromatinization is initiated from a nucleation site and spreads bidirectionally until encountering boundaries that delimit the silenced areas. Recall from earlier in the text (see Chapter 4) the brief discussion of position effect, where repositioning of the w⁺ allele in Drosophila by translocation or inversion near heterochromatin produces intermittent w⁺ activity. In the heterozygous state (w⁺/w) a variegated eye is produced, with white and red patches. How might one explain position-effect variegation in terms of histone acetylation and/or deacetylation?
474
views
Textbook Question
While much remains to be learned about the role of nucleosomes and chromatin structure and function, recent research indicates that in vivo chemical modification of histones is associated with changes in gene activity. One study determined that acetylation of H3 and H4 is associated with 21.1 percent and 13.8 percent increases in yeast gene activity, respectively, and that histones associated with yeast heterochromatin are hypomethylated relative to the genome average [Bernstein et al. (2000)]. Speculate on the significance of these findings in terms of nucleosome–DNA interactions and gene activity.
481
views
Textbook Question
An article entitled 'Nucleosome Positioning at the Replication Fork' states: 'both the 'old' randomly segregated nucleosomes as well as the 'new' assembled histone octamers rapidly position themselves (within seconds) on the newly replicated DNA strands' [Lucchini et al. (2002)]. Given this statement, how would one compare the distribution of nucleosomes and DNA in newly replicated chromatin? How could one experimentally test the distribution of nucleosomes on newly replicated chromosomes?
351
views
Textbook Question
Following is a diagram of the general structure of the bacteriophage chromosome. Speculate on the mechanism by which it forms a closed ring upon infection of the host cell.
422
views