Ch.5 - Periodicity & Electronic Structure of Atoms
Chapter 5, Problem 130
One watt (W) is equal to 1 J/s. Assuming that 5.0% of the energy output of a 75 W light bulb is visible light and that the average wavelength of the light is 550 nm, how many photons are emitted by the light bulb each second?
Verified Solution
Video duration:
5mThis video solution was recommended by our tutors as helpful for the problem above.
912
views
1
rank
Was this helpful?
Video transcript
Related Practice
Textbook Question
Orbital energies in single-electron atoms or ions, such as He+, can be described with an equation similar to the Balmer–Rydberg equation:
where Z is the atomic number. What wavelength of light in nanometers is emitted when the electron in He+ falls from n = 3 to n = 2?
698
views
Textbook Question
Imagine a universe in which the four quantum numbers can have the same possible values as in our universe except that the angular-momentum quantum number l can have integral values of 0, 1, 2...n + 1 (instead of 0, 1, 2..., n - 1). (a) How many elements would be in the first two rows of the periodic table in this universe?
1637
views
Textbook Question
Imagine a universe in which the four quantum numbers can have the same possible values as in our universe except that the angular-momentum quantum number l can have integral values of 0, 1, 2...n + 1 (instead of 0, 1, 2..., n - 1). (c) Draw an orbital-filling diagram for the element with atomic number 12.
384
views
Textbook Question
Microwave ovens work by irradiating food with microwave radiation, which is absorbed and converted into heat. Assum-ing that radiation with l = 15.0 cm is used, that all the energy is converted to heat, and that 4.184 J is needed to raise the temperature of 1.00 g of water by 1.00 °C, how many photons are necessary to raise the temperature of a 350 mL cup of water from 20 °C to 95 °C?
741
views
Textbook Question
The amount of energy necessary to remove an electron from an atom is a quantity called the ionization energy, Ei. This energy can be measured by a technique called photoelectron spectroscopy, in which light of wavelength l is directed at an atom, causing an electron to be ejected. The kinetic energy of the ejected electron (Ek) is measured by determining its veloc-ity, v (Ek = mv2/2), and Ei is then calculated using the conservation of energy principle. That is, the energy of the incident light equals Ei plus Ek. What is the ionization energy of selenium atoms in kilojoules per mole if light with l = 48.2 nm produces electrons with a velocity of 2.371 * 106 m/s? The mass, m, of an electron is 9.109 * 10-31 kg.
2743
views
Textbook Question
X rays with a wavelength of 1.54 * 10-10 m are produced when a copper metal target is bombarded with high-energy electrons that have been accelerated by a voltage difference of 30,000 V. The kinetic energy of the electrons equals the product of the voltage difference and the electronic charge in coulombs, where 1 volt-coulomb = 1 J.
(a) What is the kinetic energy in joules and the de Broglie wavelength in meters of an electron that has been accel-erated by a voltage difference of 30,000 V?
724
views