(a) What are the units usually used to express the rates of reactions occurring in solution?
Consider the following hypothetical aqueous reaction: A1aq2S B1aq2. A flask is charged with 0.065 mol of A in a total volume of 100.0 mL. The following data are collected: Time (min) 0 10 20 30 40 Moles of A 0.065 0.051 0.042 0.036 0.031 (a) Calculate the number of moles of B at each time in the table, assuming that there are no molecules of B at time zero and that A cleanly converts to B with no intermediates.



Verified Solution

Key Concepts
Stoichiometry
Concentration and Molarity
Reaction Kinetics
b. As the temperature increases, does the reaction rate usually increase or decrease?
(c) As a reaction proceeds, does the instantaneous reaction rate increase or decrease?
Consider the following hypothetical aqueous reaction: A1aq2S B1aq2. A flask is charged with 0.065 mol of A in a total volume of 100.0 mL. The following data are collected: Time (min) 0 10 20 30 40 Moles of A 0.065 0.051 0.042 0.036 0.031 (b) Calculate the average rate of disappearance of A for each 10-min interval in units of M>s.
A flask is charged with 0.100 mol of A and allowed to react to form B according to the hypothetical gas-phase reaction A1g2¡B1g2. The following data are collected: Time (s) 0 40 80 120 160 Moles of A 0.100 0.067 0.045 0.030 0.020 (c) Which of the following would be needed to calculate the rate in units of concentration per time: (i) the pressure of the gas at each time, (ii) the volume of the reaction flask, (iii) the temperature, or (iv) the molecular weight of A?
The isomerization of methyl isonitrile 1CH3NC2 to acetonitrile 1CH3CN2 was studied in the gas phase at 215 C, and the following data were obtained: Time (s) 3CH3nC4 1M2 0 0.0165 2000 0.0110 5000 0.00591 8000 0.00314 12,000 0.00137 15,000 0.00074 (b) Calculate the average rate of reaction over the entire time of the data from t = 0 to t = 15,000 s.