(a) Which of the following are required characteristics of an isotope to be used as a fuel in a nuclear power reactor? (i) It must emit gamma radiation. (ii) On decay, it must release two or more neutrons. (iii) It must have a half-life of less than one hour. (iv) It must undergo fission upon the absorption of a neutron. (b) What is the most common fissionable isotope in a commercial nuclear power reactor?

Iodine-131 is a convenient radioisotope to monitor thyroid activity in humans. It is a beta emitter with a half-life of 8.02 days. The thyroid is the only gland in the body that uses iodine. A person undergoing a test of thyroid activity drinks a solution of NaI, in which only a small fraction of the iodide is radioactive. (c) A normal thyroid will take up about 12% of the ingested iodide in a few hours. How long will it take for the radioactive iodide taken up and held by the thyroid to decay to 0.01% of the original amount?
Why is it important that radioisotopes used as diagnostic tools in nuclear medicine produce gamma radiation when they decay? Why are alpha emitters not used as diagnostic tools?
(c) What other substances are used as a moderator in nuclear reactor designs?