Skip to main content
Ch.14 - Chemical Kinetics
Chapter 14, Problem 109b

The gas-phase decomposition of ozone is thought to occur by the following two-step mechanism.
Step 1: O3(g) ⇌ O2(g) + O(g) (fast)
Step 2: O(g) + O3(g) → 2 O2 (slow)
(b) Derive the rate law that is consistent with this mechanism. (Hint: The product appears in the rate law.)

Verified Solution

Video duration:
8m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Reaction Mechanism

A reaction mechanism is a step-by-step description of the pathway by which reactants are converted into products. It outlines individual elementary steps, which can be fast or slow, and helps in understanding how the overall reaction occurs. In this case, the mechanism consists of two steps, with the first being fast and the second slow, influencing the rate law derived from the overall process.
Recommended video:
Guided course
03:06
Reaction Mechanism Overview

Rate Law

The rate law expresses the relationship between the rate of a chemical reaction and the concentration of its reactants. It is typically formulated based on the slowest step in a multi-step mechanism, as this step dictates the overall reaction rate. The rate law can include products if they are involved in the rate-determining step, as indicated in the hint provided in the question.
Recommended video:
Guided course
01:52
Rate Law Fundamentals

Elementary Steps

Elementary steps are individual reactions that occur in a reaction mechanism, each with its own rate constant. The rate of an elementary step is directly proportional to the concentrations of the reactants involved, raised to the power of their stoichiometric coefficients. Understanding these steps is crucial for deriving the overall rate law, as the slow step often determines the rate law's form and the concentrations of products may also play a role.
Recommended video:
Guided course
03:06
Reaction Mechanism Overview
Related Practice
Textbook Question

At 28 C, raw milk sours in 4.0 h but takes 48 h to sour in a refrigerator at 5 C. Estimate the activation energy in kJ>mol for the reaction that leads to the souring of milk.

2177
views
Textbook Question

The following mechanism has been proposed for the reaction of NO with H2 to form N2O and H2O: NO1g2 + NO1g2¡N2O21g2 N2O21g2 + H21g2¡N2O1g2 + H2O1g2 (d) The observed rate law is rate = k3NO423H24. If the proposed mechanism is correct, what can we conclude about the relative speeds of the first and second reactions?

1616
views
Textbook Question

Ozone in the upper atmosphere can be destroyed by the following two-step mechanism: Cl1g2 + O31g2¡ClO1g2 + O21g2 ClO1g2 + O1g2¡Cl1g2 + O21g2 (b) What is the catalyst in the reaction?

621
views
Textbook Question

The gas-phase decomposition of ozone is thought to occur by the following two-step mechanism.

Step 1: O3(g) ⇌ O2(g) + O(g) (fast)

Step 2: O(g) + O3(g) → 2 O2 (slow)

(d) If instead the reaction occurred in a single step, would the rate law change? If so, what would it be?

1054
views
Textbook Question
The following mechanism has been proposed for the gasphase reaction of chloroform 1CHCl32 and chlorine: Step 1: Cl21g2 Δ k1 k - 1 2 Cl1g2 1fast2 Step 2: Cl1g2 + CHCl31g2 ¡k2 HCl1g2 + CCl31g2 1slow2 Step 3: Cl1g2 + CCl31g2 ¡k3 CCl4 1fast2 (a) What is the overall reaction?
575
views
Textbook Question

In a hydrocarbon solution, the gold compound (CH3)3AuPH3 decomposes into ethane (C2H6) and a different gold compound, (CH3)AuPH3. The following mechanism has been proposed for the decomposition of (CH3)3AuPH3:

Step 1: (CH3)3AuPH3 k1 k -1 (CH3)3Au + PH3 (fast)

Step 2: (CH3)3Au k2 C2H6 + (CH3)Au (slow)

Step 3: (CH3)Au + PH3 ¡k3 1(CH3)AuPH3 (fast)

(c) What is the molecularity of each of the elementary steps?

358
views