Skip to main content
Ch.14 - Chemical Kinetics
Chapter 14, Problem 108b

Ozone in the upper atmosphere can be destroyed by the following two-step mechanism: Cl1g2 + O31g2¡ClO1g2 + O21g2 ClO1g2 + O1g2¡Cl1g2 + O21g2 (b) What is the catalyst in the reaction?

Verified Solution

Video duration:
1m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Catalysts

A catalyst is a substance that increases the rate of a chemical reaction without being consumed in the process. In the context of the ozone depletion mechanism, a catalyst facilitates the conversion of ozone (O3) into oxygen (O2) while remaining unchanged at the end of the reaction. This allows the catalyst to participate in multiple reaction cycles, making it effective even in small amounts.
Recommended video:
Guided course
01:59
Catalyzed vs. Uncatalyzed Reactions

Ozone Depletion

Ozone depletion refers to the reduction of ozone (O3) in the stratosphere, which is crucial for absorbing harmful ultraviolet (UV) radiation from the sun. The reaction mechanism provided illustrates how chlorine (Cl) compounds can catalyze the breakdown of ozone, leading to increased UV exposure on Earth's surface. Understanding this process is essential for grasping the environmental impact of certain pollutants.
Recommended video:
Guided course
00:46
Formation Equations Example 1

Reaction Mechanism

A reaction mechanism is a step-by-step description of how reactants are converted into products in a chemical reaction. It outlines the individual steps, intermediates, and transition states involved. In the given question, the two-step mechanism shows how chlorine reacts with ozone and how it regenerates, highlighting the role of intermediates like ClO in the overall process of ozone depletion.
Recommended video:
Guided course
03:06
Reaction Mechanism Overview
Related Practice
Textbook Question

The rate of a first-order reaction is followed by spectroscopy, monitoring the absorbance of a colored reactant at 520 nm. The reaction occurs in a 1.00-cm sample cell, and the only colored species in the reaction has an extinction coefficient of 5.60 * 103 M-1 cm-1 at 520 nm. (d) How long does it take for the absorbance to fall to 0.100?

1060
views
Textbook Question

At 28 C, raw milk sours in 4.0 h but takes 48 h to sour in a refrigerator at 5 C. Estimate the activation energy in kJ>mol for the reaction that leads to the souring of milk.

2177
views
Textbook Question

The following mechanism has been proposed for the reaction of NO with H2 to form N2O and H2O: NO1g2 + NO1g2¡N2O21g2 N2O21g2 + H21g2¡N2O1g2 + H2O1g2 (d) The observed rate law is rate = k3NO423H24. If the proposed mechanism is correct, what can we conclude about the relative speeds of the first and second reactions?

1616
views
Textbook Question

The gas-phase decomposition of ozone is thought to occur by the following two-step mechanism.

Step 1: O3(g) ⇌ O2(g) + O(g) (fast)

Step 2: O(g) + O3(g) → 2 O2 (slow)

(b) Derive the rate law that is consistent with this mechanism. (Hint: The product appears in the rate law.)

866
views
Textbook Question

The gas-phase decomposition of ozone is thought to occur by the following two-step mechanism.

Step 1: O3(g) ⇌ O2(g) + O(g) (fast)

Step 2: O(g) + O3(g) → 2 O2 (slow)

(d) If instead the reaction occurred in a single step, would the rate law change? If so, what would it be?

1054
views
Textbook Question
The following mechanism has been proposed for the gasphase reaction of chloroform 1CHCl32 and chlorine: Step 1: Cl21g2 Δ k1 k - 1 2 Cl1g2 1fast2 Step 2: Cl1g2 + CHCl31g2 ¡k2 HCl1g2 + CCl31g2 1slow2 Step 3: Cl1g2 + CCl31g2 ¡k3 CCl4 1fast2 (a) What is the overall reaction?
575
views