Chapter 19, Problem 104
In chemical kinetics, the entropy of activation is the entropy change for the process in which the reactants reach the activated complex. Predict whether the entropy of activation for a bimolecular process is usually positive or negative.
Video transcript
The conversion of natural gas, which is mostly methane, into products that contain two or more carbon atoms, such as ethane (C2H6), is a very important industrial chemical process. In principle, methane can be converted into ethane and hydrogen: 2 CH4(g) → C2H6(g) + H2(g) In practice, this reaction is carried out in the presence of oxygen: 2 CH4(g) + 12 O2(g) → C2H6(g) + H2O(g) (b) Is the difference in ΔG° for the two reactions due primarily to the enthalpy term (ΔH) or the entropy term (-TΔS)?
The conversion of natural gas, which is mostly methane, into products that contain two or more carbon atoms, such as ethane (C2H6), is a very important industrial chemical process. In principle, methane can be converted into ethane and hydrogen: 2 CH4(g) → C2H6(g) + H2(g) In practice, this reaction is carried out in the presence of oxygen: 2 CH4(g) + 1/2 O2(g) → C2H6(g) + H2O(g) (c) Explain how the preceding reactions are an example of driving a nonspontaneous reaction, as discussed in the 'Chemistry and Life' box in Section 19.7.
The potassium-ion concentration in blood plasma is about 5.0⨉10-3 M, whereas the concentration in muscle-cell fluid is much greater (0.15 M ). The plasma and intracellular fluid are separated by the cell membrane, which we assume is permeable only to K+. (a) What is ΔG for the transfer of 1 mol of K+ from blood plasma to the cellular fluid at body temperature 37 °C? (b) What is the minimum amount of work that must be used to transfer this K+?
At what temperatures is the following reaction, the reduction of magnetite by graphite to elemental iron, spontaneous? Fe3O4(s) + 2 C(s, graphite) → 2 CO2(g) + 3 Fe(s)
An ice cube with a mass of 20 g at -20 °C (typical freezer temperature) is dropped into a cup that holds 500 mL of hot water, initially at 83 °C. What is the final temperature in the cup? The density of liquid water is 1.00 g>mL; the specific heat capacity of ice is 2.03 J>g@C; the specific heat capacity of liquid water is 4.184 J>g@C; the enthalpy of fusion of water is 6.01 kJ>mol.