Skip to main content
Ch.19 - Chemical Thermodynamics
Chapter 19, Problem 105

At what temperatures is the following reaction, the reduction of magnetite by graphite to elemental iron, spontaneous? Fe3O4(s) + 2 C(s, graphite) → 2 CO2(g) + 3 Fe(s)

Verified Solution

Video duration:
7m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Gibbs Free Energy

Gibbs Free Energy (G) is a thermodynamic potential that helps predict the spontaneity of a reaction at constant temperature and pressure. A reaction is spontaneous when the change in Gibbs Free Energy (ΔG) is negative. The relationship between ΔG, enthalpy (ΔH), and entropy (ΔS) is given by the equation ΔG = ΔH - TΔS, where T is the temperature in Kelvin.
Recommended video:
Guided course
01:51
Gibbs Free Energy of Reactions

Entropy and Enthalpy

Entropy (S) is a measure of the disorder or randomness in a system, while enthalpy (H) is a measure of the total energy of a system, including internal energy and the energy required to make room for it. In the context of a reaction, an increase in entropy (positive ΔS) often favors spontaneity, especially at higher temperatures, while a decrease in enthalpy (negative ΔH) also promotes spontaneity.
Recommended video:
Guided course
02:46
Entropy in Thermodynamics

Temperature's Role in Spontaneity

Temperature plays a crucial role in determining the spontaneity of a reaction through its influence on the Gibbs Free Energy equation. As temperature increases, the TΔS term becomes more significant, which can make a reaction spontaneous if ΔS is positive. Therefore, understanding how temperature affects the balance between enthalpy and entropy is essential for predicting the spontaneity of the reduction of magnetite by graphite.
Recommended video:
Guided course
01:17
Spontaneity and Temperature
Related Practice
Textbook Question

The conversion of natural gas, which is mostly methane, into products that contain two or more carbon atoms, such as ethane (C2H6), is a very important industrial chemical process. In principle, methane can be converted into ethane and hydrogen: 2 CH4(g) → C2H6(g) + H2(g) In practice, this reaction is carried out in the presence of oxygen: 2 CH4(g) + 1/2 O2(g) → C2H6(g) + H2O(g) (c) Explain how the preceding reactions are an example of driving a nonspontaneous reaction, as discussed in the 'Chemistry and Life' box in Section 19.7.

754
views
Textbook Question

The potassium-ion concentration in blood plasma is about 5.0⨉10-3 M, whereas the concentration in muscle-cell fluid is much greater (0.15 M ). The plasma and intracellular fluid are separated by the cell membrane, which we assume is permeable only to K+. (a) What is ΔG for the transfer of 1 mol of K+ from blood plasma to the cellular fluid at body temperature 37 °C? (b) What is the minimum amount of work that must be used to transfer this K+?

1097
views
1
rank
Textbook Question
In chemical kinetics, the entropy of activation is the entropy change for the process in which the reactants reach the activated complex. Predict whether the entropy of activation for a bimolecular process is usually positive or negative.
1493
views
Textbook Question

An ice cube with a mass of 20 g at -20 °C (typical freezer temperature) is dropped into a cup that holds 500 mL of hot water, initially at 83 °C. What is the final temperature in the cup? The density of liquid water is 1.00 g>mL; the specific heat capacity of ice is 2.03 J>g@C; the specific heat capacity of liquid water is 4.184 J>g@C; the enthalpy of fusion of water is 6.01 kJ>mol.

2262
views
Textbook Question
Carbon disulfide 1CS22 is a toxic, highly flammable substance. The following thermodynamic data are available for CS21l2 and CS21g2 at 298 K: (e) Use the data in the table to calculate ΔS° at 298 K for the vaporization of CS21l2. Is the sign of ΔS° as you would expect for a vaporization?
516
views
Textbook Question
The following data compare the standard enthalpies and free energies of formation of some crystalline ionic substances and aqueous solutions of the substances:
(a) Write the formation reaction for AgNO31s2. Based on this reaction, do you expect the entropy of the system to increase or decrease upon the formation of AgNO31s2? (b) Use ΔH°f and ΔG°f of AgNO31s2 to determine the entropy change upon formation of the substance. Is your answer consistent with your reasoning in part (a)?
499
views