Ch 37: Special Relativity
Chapter 36, Problem 39
Photorefractive keratectomy (PRK) is a laser-based surgical procedure that corrects near- and farsightedness by removing part of the lens of the eye to change its curvature and hence focal length. This procedure can remove layers 0.25 mm thick using pulses lasting 12.0 ns from a laser beam of wavelength 193 nm. Low-intensity beams can be used because each individual photon has enough energy to break the covalent bonds of the tissue. (c) If a 1.50-mW beam is used, how many photons are delivered to the lens in each pulse?
Verified Solution
Video duration:
4mThis video solution was recommended by our tutors as helpful for the problem above.
283
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
Use Balmer's formula to calculate (a) the wavelength, (b) the frequency, and (c) the photon energy for the Hg line of the Balmer series for hydrogen.
353
views
Textbook Question
Using a mixture of CO2, N2, and sometimes He, CO2 lasers emit a wavelength of 10.6 um. At power of 0.100 kW, such lasers are used for surgery. How many photons per second does a CO2 laser deliver to the tissue during its use in an operation?
337
views
Textbook Question
How many photons per second are emitted by a 7.50-mW CO2 laser that has a wavelength of 10.6 mm?
330
views
Textbook Question
The shortest visible wavelength is about 400 nm. What is the temperature of an ideal radiator whose spectral emittance peaks at this wavelength?
339
views
Textbook Question
Two stars, both of which behave like ideal blackbodies, radiate the same total energy per second. The cooler one has a surface temperature T and a diameter 3.0 times that of the hotter star. (a) What is the temperature of the hotter star in terms of T ? (b) What is the ratio of the peak-intensity wavelength of the hot star to the peak-intensity wavelength of the cool star?
320
views
Textbook Question
A pesky 1.5-mg mosquito is annoying you as you attempt to study physics in your room, which is 5.0 m wide and 2.5 m high. You decide to swat the bothersome insect as it flies toward you, but you need to estimate its speed to make a successful hit. (a) What is the maximum uncertainty in the horizontal position of the mosquito? (b) What limit does the Heisenberg uncertainty principle place on your ability to know the horizontal velocity of this mosquito? Is this limitation a serious impediment to your attempt to swat it?
420
views