Ch 31: Alternating Current
Chapter 31, Problem 31
A resistor with R = 300 Ω and an inductor are connected in series across an ac source that has voltage amplitude 500 V. The rate at which electrical energy is dissipated in the resistor is 286 W. What is (a) the impedance Z of the circuit; (b) the amplitude of the voltage across the inductor; (c) the power factor?
Verified Solution
Video duration:
13mThis video solution was recommended by our tutors as helpful for the problem above.
418
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
A capacitance C and an inductance L are operated at the same angular frequency. (a) At what angular frequency will they have the same reactance? (b) If L = 5 00 mH and C = 3.50 μF, what is the numerical value of the angular frequency in part (a), and what is the reactance of each element?
433
views
Textbook Question
(a) Compute the reactance of a 0.450-H inductor at frequencies of 60.0 Hz and 600 Hz. (b) Compute the reactance of a 2.50-μF capacitor at the same frequencies. (c) At what frequency is the reactance of a 0.450-H inductor equal to that of a 2.50-μFcapacitor?
297
views
Textbook Question
A capacitor is connected across an ac source that has voltage amplitude 60.0 V and frequency 80.0 Hz. (a) What is the phase angle Φ for the source voltage relative to the current? Does the source voltage lag or lead the current?
373
views
Textbook Question
The power of a certain CD player operating at 120 V rms is 20.0 W. Assuming that the CD player behaves like a pure resistor, find (a) the maximum instantaneous power.
228
views
Textbook Question
In an L-R-C series circuit, the components have the following values: L = 20.0 mH, C = 140 nF, and R = 350 Ω.The generator has an rms voltage of 120 V and a frequency of 1.25 kHz. Determine (a) the power supplied by the generator and (b) the power dissipated in the resistor.
471
views
Textbook Question
An L-R-C series circuit with L = 0.120 H, R = 240 Ω, and C = 7.30 μF carries an rms current of 0.450 A with a frequency of 400 Hz. (a) What are the phase angle and power factor for this circuit?
207
views