Ch 28: Sources of Magnetic Field
Chapter 28, Problem 28
. Two long, parallel wires are separated by a distance of 0.400 m (Fig. E28.29). The currents I1 and I2 have the directions shown. (b) Each current is doubled, so that I1 becomes 10.0 A and I2 becomes 4.00 A. Now what is the magnitude of the force that each wire exerts on a 1.20-m length of the other?
Verified Solution
Video duration:
2mThis video solution was recommended by our tutors as helpful for the problem above.
534
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
Currents in dc transmission lines can be 100 A or higher. Some people are concerned that the electromagnetic fields from such lines near their homes could pose health dangers. For a line that has current 150 A and a height of 8.0 m above the ground, what magnetic field does the line produce at ground level? Express your answer in teslas and as a percentage of the earth's magnetic field, which is 0.50 G. Is this value cause for worry?
959
views
Textbook Question
Four, long, parallel power lines each carry 100-A currents. A cross-sectional diagram of these lines is a square, 20.0 cm on each side. For each of the three cases shown in Fig. E28.25, calculate the magnetic field at the center of the square.
1073
views
2
rank
Textbook Question
. Two long, parallel wires are separated by a distance of 0.400 m (Fig. E28.29). The currents I1 and I2 have the directions shown. (a) Calculate the magnitude of the force exerted by each wire on a 1.20-m length of the other. Is the force attractive or repulsive?
698
views
Textbook Question
A solenoid 25.0 cm long and with a cross-sectional area of 0.500 cm^2 contains 400 turns of wire and carries a current of 80.0 A. Calculate: (c) the total energy contained in the coil's magnetic field (assume the field is uniform);
383
views