Ch 27: Magnetic Field and Magnetic Forces
Chapter 27, Problem 27
A thin, 50.0-cm-long metal bar with mass 750 g rests on, but is not attached to, two metallic supports in a uniform 0.450-T magnetic field, as shown in Fig. E27.37 . A battery and a 25.0-ohm resistor in series are connected to the supports. (a) What is the highest voltage the battery can have without breaking the circuit at the supports? (b) The battery voltage has the maximum value calculated in part (a). If the resistor suddenly gets partially short-circuited, decreasing its resistance to 2.00-ohm, find the initial acceleration of the bar.
Verified Solution
Video duration:
8mThis video solution was recommended by our tutors as helpful for the problem above.
930
views
2
rank
Was this helpful?
Video transcript
Related Practice
Textbook Question
In a cyclotron, the orbital radius of protons with energy 300 keV is 16.0 cm. You are redesigning the cyclotron to be used instead for alpha particles with energy 300 keV. An alpha particle has charge q = +2e and mass m = 6.64x10^-27 kg. If the magnetic field isn't changed, what will be the orbital radius of the alpha particles?
516
views
Textbook Question
A beam of protons traveling at 1.20 km/s enters a uniform magnetic field, traveling perpendicular to the field. The beam exits the magnetic field, leaving the field in a direction perpendicular to its original direction (Fig. E27.24) . The beam travels a distance of 1.18 cm while in the field. What is the magnitude of the magnetic field?
572
views
1
rank
Textbook Question
A long wire carrying 4.50 A of current makes two 90° bends, as shown in Fig. E27.35 . The bent part of the wire passes through a uniform 0.240-T magnetic field directed as shown in the figure and confined to a limited region of space. Find the magnitude and direction of the force that the magnetic field exerts on the wire.
2803
views
Textbook Question
A straight, vertical wire carries a current of 2.60 A downward in a region between the poles of a large superconducting electromagnet, where the magnetic field has magnitude B = 0.588 T and is horizontal. What are the magnitude and direction of the magnetic force on a 1.00-cm section of the wire that is in this uniform magnetic field, if the magnetic field direction is (a) east?
1203
views
Textbook Question
A particle with mass 1.81x10^-3 kg and a charge of 1.22x10^-8 C has, at a given instant, a velocity v=(3.00x10^4 m>s)j. What are the magnitude and direction of the particle's acceleration produced by a uniform magnetic field B=(1.63 T)i+(0.980 T)j?
1778
views
Textbook Question
An electron experiences a magnetic force of magnitude 4.60x10^-15 N when moving at an angle of 60.0° with respect to a magnetic field of magnitude 3.50x10^-3 T. Find the speed of the electron.
821
views