Ch 05: Applying Newton's Laws
Chapter 5, Problem 5
An 8.00-kg block of ice, released from rest at the top of a 1.50-m-long frictionless ramp, slides downhill, reaching a speed of 2.50 m/s at the bottom. (b) What would be the speed of the ice at the bottom if the motion were opposed by a constant friction force of 10.0 N parallel to the surface of the ramp?
Verified Solution
Video duration:
0m:0sThis video solution was recommended by our tutors as helpful for the problem above.
404
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
A picture frame hung against a wall is suspended by two wires attached to its upper corners. If the two wires make the same angle with the vertical, what must this angle be if the tension in each wire is equal to 0.75 of the weight of the frame? (Ignore any friction between the wall and the picture frame.)
506
views
Textbook Question
When jumping straight up from a crouched position, an average person can reach a maximum height of about 60 cm. During the jump, the person's body from the knees up typically rises a distance of around 50 cm. To keep the calculations simple and yet get a reasonable result, assume that the entire body rises this much during the jump. (c) In terms of this jumper's weight w, what force does the ground exert on him or her during the jump?
222
views
Textbook Question
A 45.0-kg crate of tools rests on a horizontal floor. You exert a gradually increasing horizontal push on it, and the crate just begins to move when your force exceeds 313 N. Then you must reduce your push to 208 N to keep it moving at a steady 25.0 cm/s. (c) Suppose you were performing the same experiment on the moon, where the acceleration due to gravity is 1.62 m/s2. (i) What magnitude push would cause it to move? (ii) What would its acceleration be if you maintained the push in part (b)?
268
views
Textbook Question
A 1130-kg car is held in place by a light cable on a very smooth (frictionless) ramp (Fig. E5.8). The cable makes an angle of 31.0° above the surface of the ramp, and the ramp itself rises at 25.0° above the horizontal. (c) How hard does the surface of the ramp push on the car? <IMAGE>
90
views