Ch 04: Newton's Laws of Motion
Chapter 4, Problem 5
An astronaut is inside a 2.25 × 106 kg rocket that is blasting off vertically from the launch pad. You want this rocket to reach the speed of sound (331 m/s) as quickly as possible, but astronauts are in danger of blacking out at an acceleration greater than 4g. (a) What is the maximum initial thrust this rocket's engines can have but just barely avoid blackout? Start with a free-body diagram of the rocket.
Verified Solution
Video duration:
5mThis video solution was recommended by our tutors as helpful for the problem above.
1244
views
1
rank
Was this helpful?
Video transcript
Related Practice
Textbook Question
Two 25.0-N weights are suspended at opposite ends of a rope that passes over a light, frictionless pulley. The pulley is attached to a chain from the ceiling. (a) What is the tension in the rope?
577
views
Textbook Question
Two 25.0-N weights are suspended at opposite ends of a rope that passes over a light, frictionless pulley. The pulley is attached to a chain from the ceiling. (b) What is the tension in the chain?
1768
views
Textbook Question
A light rope is attached to a block with mass 4.00 kg that rests on a frictionless, horizontal surface. The horizontal rope passes over a frictionless, massless pulley, and a block with mass m is suspended from the other end. When the blocks are released, the tension in the rope is 15.0 N. (a) Draw two free-body diagrams: one for each block.
2542
views
Textbook Question
An astronaut is inside a 2.25 × 106 kg rocket that is blasting off vertically from the launch pad. You want this rocket to reach the speed of sound (331 m/s) as quickly as possible, but astronauts are in danger of blacking out at an acceleration greater than 4g. (b) What force, in terms of the astronaut's weight w, does the rocket exert on her? Start with a free-body diagram of the astronaut.
1640
views
1
rank
Textbook Question
On September 8, 2004, the Genesis spacecraft crashed in the Utah desert because its parachute did not open. The 210-kg capsule hit the ground at 311 km/h and penetrated the soil to a depth of 81.0 cm. (a) What was its acceleration (in m/s2 and in g's), assumed to be constant, during the crash?
541
views
Textbook Question
A 1130-kg car is held in place by a light cable on a very smooth (frictionless) ramp (Fig. E5.8). The cable makes an angle of 31.0° above the surface of the ramp, and the ramp itself rises at 25.0° above the horizontal. (a) Draw a free-body diagram for the car.
2212
views
1
comments