Ch 17: Superposition
Chapter 17, Problem 17
Piano tuners tune pianos by listening to the beats between the harmonics of two different strings. When properly tuned, the note A should have a frequency of 440 Hz and the note E should be at 659 Hz. c. The tuner starts with the tension in the E string a little low, then tightens it. What is the frequency of the E string when she hears four beats per second?
Verified Solution
Video duration:
6mThis video solution was recommended by our tutors as helpful for the problem above.
398
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
A 1.0-m-tall vertical tube is filled with 20°C water. A tuning fork vibrating at 580 Hz is held just over the top of the tube as the water is slowly drained from the bottom. At what water heights, measured from the bottom of the tube, will there be a standing wave in the tube above the water?
737
views
Textbook Question
An old mining tunnel disappears into a hillside. You would like to know how long the tunnel is, but it's too dangerous to go inside. Recalling your recent physics class, you decide to try setting up standing-wave resonances inside the tunnel. Using your subsonic amplifier and loudspeaker, you find resonances at 4.5 Hz and 6.3 Hz, and at no frequencies between these. It's rather chilly inside the tunnel, so you estimate the sound speed to be 335 m/s . Based on your measurements, how far is it to the end of the tunnel?
326
views
Textbook Question
A flutist assembles her flute in a room where the speed of sound is 342 m/s . When she plays the note A, it is in perfect tune with a 440 Hz tuning fork. After a few minutes, the air inside her flute has warmed to where the speed of sound is 346 m/s.
b. How far does she need to extend the 'tuning joint' of her flute to be in tune with the tuning fork?
548
views